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Abstract

Oceanic and atmospheric warming threaten melting and collapse of Earth’s ice sheets. Global

mean sea level rise disrupts coastal ecosystems and communities by increasing destructive po-

tential of coastal inundation events, and disturbing ocean circulation patterns. Therefore,

robust projections of spatiotemporal patterns of sea level change are critically important. To

construct them, improved understanding of solid Earth structure is required, due to physi-

cal couplings between mantle dynamics and ice sheet stability. To date, poor constraint on

Earth’s interior structure has obfuscated reliable estimation of future sea level change. Here,

a Bayesian inverse framework for self-consistent conversion of seismic velocity into estimates

of mantle thermomechanical structure is applied to Antarctica. Low viscosity anomalies are

inferred in West Antarctica, such as western Marie Byrd Land, where η = 1019.5±0.3 Pa s at

150 km depth. Thick lithosphere, high viscosity, and low geothermal heat flow is inferred in East

Antarctica, consistent with cratonic lithosphere. By consideration of time-dependent viscos-

ity perturbations (∼ 1 order of magnitude), seemingly disparate inferences of West Antarctic

mantle viscosity derived from GPS data are reconciled. Variations in Antarctic geothermal

heat flow from 20 to 130mWm−2 are inferred, based on a novel method incorporating crustal

composition. Modifying the framework developed for estimating mantle structure, to incor-

porate use of xenolith-derived palaeogeotherm constraints, Australian lithospheric structure is

mapped. It is demonstrated that 97% of metal mass so far mined from Australian base metal

deposits is located within 200 km of the 195 km LAB depth contour. Finally, the impact of

transient rheology on ice sheet stability is explored, and applied to a simple model of Antarctic

glacial isostatic adjustment. For short melting timescales, significantly more near-field defor-

mation is caused by a novel rheological model (exhibiting transient behaviour), as compared

to a reference Maxwell model. When melting occurs over 25 years, a 52% increase in Earth

surface displacement is observed.
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Some say the world will end in fire,

Some say in ice.

From what I’ve tasted of desire

I hold with those who favor fire.

But if it had to perish twice,

I think I know enough of hate

To say that for destruction ice

Is also great

And would suffice.

Fire and Ice

by Robert Frost (1923)
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Chapter 1

Introduction

Anthropogenically induced climate change presents society with a myriad of challenges. One

such challenge is that oceanic and atmospheric warming threaten melting and collapse of Earth’s

ice sheets. The Antarctic and Greenland ice sheets contain a volume of ice equivalent to

57.9 ± 0.9 m and 7.42 ± 0.05 m of global mean sea level rise, respectively (Morlighem et al.,

2017; Morlighem et al., 2020). Together this corresponds to 99% of global land ice volume,

with the rest being made up by glaciers and ice caps (Bamber et al., 2018). While glaciers and

ice caps were the dominant land ice contributor to sea level rise during the last century, they

have since been overtaken by ice sheet melting (Vaughan et al., 2013).

A climate scenario where global mean surface air temperatures rise to 5 ◦C above prein-

dustrial by 2100, consistent with unchecked greenhouse gas emissions, is expected to cause sea

levels to rise in the region of 0.07m to 1.78m by the turn of the next century (Bamber et al.,

2019). The frequency and intensity of episodic coastal inundation events caused by waves,

tides and storm surges are highly sensitive to sea level rise (Oppenheimer et al., 2019b). It

has been posited that, without adaptation, global mean sea level rise of 1m over this period

could displace 187 million people living in coastal communities (Nicholls et al., 2011). From an

economic perspective, a recent study of coastal flood damage estimates that global gross do-
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mestic product could be reduced by as much as 9.3% annually under similar conditions (Hinkel

et al., 2014). While significant development of flood protection systems is expected, continued

global population growth and limits on adaptive capacity mean that sea level rise represents a

significant threat to humanity (Nicholls and Cazenave, 2010). In addition, the loss of ice may

disrupt global ocean circulation patterns, marine and coastal ecosystems, and act as a climate

feedback via reduced albedo (Vaughan et al., 2013).

Robust prediction of the evolution of the volume and distribution of water over Earth’s sur-

face is thus of vital interest, and requires a reliable assessment of ice sheet stability. To achieve

this one requires detailed insight on past ice volumes from the geological record, quantification

of present-day ice mass balance, and physically accurate models for the future evolution of

the cryosphere (Caron et al., 2018; Debayle et al., 2016; Slangen et al., 2017). Developing an

improved understanding of solid Earth structure and dynamics has a key role to play in each

of these pursuits. This is because time-dependent lithospheric deflections caused by evolving

surface loads and mantle flow alter the elevation of palaeo sea level indicators, the shape of the

oceans and gravity field, and the stability of grounded ice (Austermann et al., 2015; Gomez

et al., 2018; Mitrovica et al., 2020). Therefore, poor constraints on Earth’s interior structure,

and the interaction of Earth’s interior with polar ice sheets, are major impediments to accurate

forecasting of future ice volume change for several reasons, which are outlined in Section 1.1

and 1.2. In this thesis, these issues are addressed by leveraging recent observational, theoretical

and computational advances to construct state-of-the-art models of Earth’s mantle rheology,

and interpret these models in the context of ice sheet stability and sea level change.

1.1 Estimates of Contemporary Ice Mass Balance

Grounded ice sheets acquire mass via snow accumulation, and lose mass via meltwater run off

and ice discharge. The balance between these phenomena ultimately determines their time-
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dependent ice mass balance (Shepherd et al., 2018a). Estimates of contemporary ice mass

balance are therefore crucial to understanding the real-time response of the Antarctic and

Greenland ice sheets to ongoing climate forcing, and the corresponding effect on sea level.

Such estimates typically rely on satellite missions recording either altimetric or gravimetric

data (Shepherd et al., 2018b, 2020; Zwally and Giovinetto, 2011). For example, the Gravity

Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-On (GRACE-

FO), in principle, offer indirect regional scale insight into ice mass balance via the tracking of

temporal changes in Earth’s gravitational field strength (King et al., 2012). However, glacial

isostatic adjustment (GIA) also influences the gravity field significantly on decadal timescales.

Therefore, the contaminating GIA signal must be removed to accurately estimate ice mass

balance.

GIA refers to the viscoelastic response of the solid Earth to changes in the distribution

of ice and water over its surface. The spatiotemporally evolving GIA signal is responsible

for perturbations to the shape of the solid Earth, the geoid, and Earth’s pole of rotation and

rotation rate (Mitrovica and Milne, 2002). For example, consider the melting of an ice sheet. In

the near field, a fall in relative sea level (RSL; i.e., the depth of the water column) is observed.

This occurs for two reasons. First, Earth’s surface deforms outwards (postglacial rebound), in

response to the stress release associated with deglaciation. Second, local ice mass loss reduces

the gravitational attraction between nearby seawater and the ice sheet, causing a redistribution

of seawater away from the site of melting. In addition, subsidence of the glacial forebulge around

the circumference of the former ice sheet draws water away from the far field, in a process

known as ocean syphoning (Mitrovica and Milne, 2002). This redistribution, combined with

the overall increase in global oceanic water volumes due to melting, causes additional ocean

basin subsidence and upwarping of the continent; a process known as continental levering

(Mitrovica and Milne, 2002). These transfers of mass over Earth’s surface cause its rotational
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state to be perturbed, in turn altering the geoid and exciting further solid Earth deformation

(Whitehouse, 2018). Therefore, GIA induces spatial variability in sea level away from the

global average upon the addition of meltwater. Since Earth’s mantle behaves viscoelastically,

the crustal deformation response contains instantaneous and time-dependent components, such

that sea level changes are not only spatially dependent, but evolving in time. Since RSL exerts

a significant influence on ice sheet stability, the rate of further melting is GIA-dependent,

meaning ice sheet and solid Earth evolution are fundamentally coupled (Gomez et al., 2010).

The Earth is still responding today to deglaciation following the Last Glacial Maximum

(ca. 21 ka). For example, in Antarctica, elastically adjusted GPS uplift rates range from

−5mma−1 to 5mma−1 (Thomas et al., 2011). Therefore, determination of ice mass loss from

modern satellite gravity measurements requires accurate knowledge of the present-day ampli-

tude and spatial pattern of this long-term adjustment. However, calculation of the GIA signal

requires two main inputs that are weakly constrained; the first being a reconstruction of ice

sheet history, and the second a viscoelastic Earth model. Due to the sparsity of ice sheet extent

and thickness data, numerical models are used to reconstruct ice sheet histories (Whitehouse,

2018). Such ice models typically assume a one-dimensional solid Earth structure, local sea levels

tracking the global average, and limited to no coupling between the solid Earth and ice dynam-

ics. From a viscoelastic Earth model perspective, most GIA models assume a one-dimensional,

or a poorly constrained laterally variable, mantle rheology. Each of these limitations introduces

significant uncertainty into assessment of present-day ice mass loss.

For example, Caron et al. (2018) used a probabilistic approach to quantify GIA uncertainty

introduced into gravity data estimates for Antarctic Ice Sheet mass balance using approximately

105 combinations of ice sheet and one-dimensional viscosity models. The authors concluded

that the amplitude of the GIA uncertainty was 44% of the total GRACE gravity signal. This is

likely to be an underestimate of the true GIA uncertainty, since the aforementioned study does
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not account for significant lateral heterogeneity in upper mantle viscosity (e.g., see Barletta et

al., 2018), and only accounts for coupling between GIA and ice dynamics via the perturbation

to Earth’s rotation axis caused by melt. Therefore, GRACE-derived estimates of ice mass

balance are likely even more uncertain than currently assumed.

1.2 Projections of Future Sea Level Change

The quality of projections of future sea level change is heavily reliant on the ability to model

GIA as accurately and precisely as possible. Due to the presence of physical couplings between

solid Earth and ice dynamics, GIA tells us not only how sea level is affected by ongoing melt-

ing of the Greenland and Antarctic ice sheets, but also the reverse. Treatments that ignore

such solid Earth feedbacks in their estimation of future sea level are therefore limited (e.g.,

DeConto and Pollard, 2016). GIA models that do incorporate solid Earth feedbacks will be

particularly sensitive to the underlying mantle rheology, which acts as a direct control on vis-

coelastic deformation rates (Whitehouse, 2018). For example, the presence of low viscosity

mantle beneath melting marine-based sectors of the Antarctic Ice Sheet, such as the Amundsen

Sea Embayment, may help to delay or even prevent unstable grounding line retreat (Barletta

and Bordoni, 2013). This enhanced dependence on knowledge of mantle rheological structure

points to the requirement for coupled ice sheet-sea level modelling, incorporating accurate esti-

mates of three-dimensional mantle thermomechanical structure (Gomez et al., 2018). The use

of laterally variable mantle structure is important even without consideration of solid Earth-ice

sheet coupling. Recent tests show that the difference in RSL predictions for 2100 CE between

best-fitting one-dimensional and three-dimensional Earth models is as large in amplitude as

the one-dimensional RSL signal itself (Milne et al., 2021). Therefore, accurate quantification

of Earth’s thermomechanical structure is critical for the construction of reliable sea level pro-

jections.
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1.3 Recent Advances

In this thesis, four recent advances are used to address the outstanding challenges in under-

standing solid Earth-cryosphere interactions outlined above. First, a huge increase in the avail-

ability and quality of seismic data has been enabled by expanded seismic array deployment.

Concurrently, sophisticated tomographic inversion methods have been developed, allowing im-

ages of Earth’s three-dimensional seismic structure to be determined. These developments

enable shear-wave velocity (VS) structure to be mapped globally at sub-1◦ resolution (Schaeffer

and Lebedev, 2013). On a regional scale, even higher resolutions are possible, e.g. allowing

∼ 100 km features beneath Antarctica to be constrained (Lloyd et al., 2020). In addition, the

presence of polar geophysical and geochemical data, such as GPS-derived viscosity inferences

and xenolith-derived palaeogeothermal profiles, allows reliable benchmarking of predictions

made from seismic data (Barletta et al., 2018; Hoggard et al., 2020; Klöcking et al., 2020).

Second, development of experimental parameterisations of mantle rock viscoelasticity enables

self-consistent conversion between seismic velocity and thermodynamic parameters including

temperature, density and viscosity (Takei, 2017; Yamauchi and Takei, 2016). These are key

inputs for geodynamic simulations. Third, advances in inverse theory including key develop-

ments in algorithmic implementation enable robust exploration of the parameter spaces needed

to constrain geophysical problems (Andrieu and Thoms, 2008; Eilon et al., 2018; Fukuda and

Johnson, 2010; Gelman et al., 1997; Haario et al., 2001; Roy, 2020). In particular, taking

a probabilistic approach toward parameter inversion allows formal uncertainty quantification.

These advances allow laboratory derived parameterisations of mantle rock viscoelasticity to

be reliably calibrated against independent geophysical data. Finally, improved understanding

of the interaction between solid Earth deformation and ice sheet dynamics is reflected in the

development of advanced numerical modelling techniques for GIA (Whitehouse, 2018). For ex-

ample, dynamic ice sheet reconstructions interacting with a three-dimensional solid Earth are
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under development for use in GIA studies (Gomez et al., 2018). In addition, time-dependent

variations in apparent mantle viscosity are implied by the latest parameterisations of mantle

rock viscoelasticity (Qu et al., 2021; Yamauchi and Takei, 2016). Such variations influence the

timescale and character of Earth’s viscoelastic deformation response to surface loading changes.

Theoretical frameworks for incorporating this so-called transient rheology into GIA models have

recently been developed, and serve as the basis for investigating relationships between transient

rheology, ice sheet stability and sea level change (Lau, 2024).

1.4 Chapter Overview

Chapter 2 concerns the exploitation of seismic data as a geophysical proxy for mantle ther-

momechanical structure. Earthquake-generated shear waves, detected at Earth’s surface, are

sensitive to the thermal state of the mantle material they are transmitted through, via measur-

able properties such as wave speed and attenuation. Previously, empirical parameterisations

with a number of limitations have been used to relate VS anomalies to changes in mantle tem-

perature (T ). By replacing empirical parameterisations with experimental parameterisations

of mantle rock viscoelasticity, accurate VS–T conversions are facilitated (Richards et al., 2020a;

Yamauchi and Takei, 2016). Such laboratory-derived parameterisations incorporate polycrys-

tal anelasticity, a form of time-dependent but fully recoverable deformation, which causes a

significant reduction in VS at near-solidus temperatures. In this chapter, a Bayesian inversion

approach is adopted, enabling the use of independent geophysical data constraints to calibrate

the VS–T relationship. The use of a Bayesian framework for tackling the problem allows for

rigorous uncertainty quantification. A posterior ensemble of models can be used to convert VS

into estimates of mantle thermomechanical structure, with associated uncertainties.

In Chapter 3, the inverse framework developed in Chapter 2 is applied to Antarctica. The

recently developed high-resolution Antarctic tomographic velocity model ANT-20 of Lloyd et al.
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(2020) is exploited, alongside four geophysical constraints pertaining to mantle structure within

the spatial footprint of the seismic data. The main constraint is a regionally optimised model of

age-dependent oceanic lithospheric thermal evolution. In this model, mantle potential tempera-

ture, plate thickness and zero-age ridge depth are treated as free parameters to be fitted against

regional age-depth and age-heat flow data. The resultant best-fitting structure is used to con-

strain the relationship between VS and T between 50 km and 125 km depth. This constraint

is complemented by an adiabatic profile used to estimate mean asthenospheric temperatures,

a radial profile of seismic shear-wave attenuation, and an estimate of average asthenospheric

shear viscosity. Application of the inversion approach enables estimation of Antarctic ther-

momechanical structure, including mantle diffusion creep viscosity, lithosphere-asthenosphere

boundary (LAB) depth, and geothermal heat flow (GHF). Viscosity and lithospheric thick-

ness are first order controls on GIA and resulting inferences of ice sheet stability. Meanwhile,

ice sheet model predictions also depend on accurate maps of heat flow. Therefore, the esti-

mates provided can be used to improve understanding of past, present and future sea level.

Furthermore, the issue of time-dependent apparent viscosity is applied, in order to reconcile

seemingly discrepant predictions of Antarctic mantle viscosity derived from GPS observations

of GIA-related deformation. It is shown that anomalously low viscosity inferences from West

Antarctica (e.g., 4 × 1018 Pa s in Amundsen Sea Embayment, see Barletta et al., 2018), are

biased low by up to ∼ 1 order of magnitude due to the assumption of Maxwell rheology.

Chapter 4 tackles the issue of GHF in more depth. This parameter quantifies the supply

of thermal energy from the solid Earth into the base of an ice sheet. Geothermal heat flow

is a key component of the thermal boundary conditions of an ice sheet, influencing melt rates

and ultimately ice sheet stability. In Antarctica, heat flow varies from values as low as ∼

20 mWm−2, to as high as ∼ 130 mWm−2. In order to model future ice sheet evolution, an

accurate model of the spatial pattern of such heat flow variations is required. In Chapter 4,
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shear- and compressional-wave velocities are combined to provide sensitivity to the thermal

and compositional structure of Antarctic lithosphere. Crustal conductivity, radiogenic heat

production, and GHF are co-constrained as part of a novel modelling framework. The resulting

heat flow estimates are compared to previous studies, and local borehole data. Incorporating

lateral variations in crustal composition is shown to improve agreement with available heat flow

measurements.

In Chapter 5, attention is turned to Australia, where robust quantification of lithospheric

and asthenospheric thermal structure is pertinent to a range of human-related issues, including

the sea level focus maintained in Chapters 2–4. Completed as part of Geoscience Australia’s

Exploring for the Future research program, the probabilistic framework developed for mapping

mantle structure in Chapter 2 is extended to allow the use of pressure-temperature constraints

derived from xenolith thermobarometry. Hyperparameters built into the Bayesian inversion

are used to objectively weight individual xenolith-derived palaeogeotherms based on their re-

liability. An updated inventory of xenolith constraints is used to construct high-resolution

models of Australian mantle temperature structure and LAB depth, with rigorously quantified

uncertainty. Such models are important inputs for reconstructions of past sea level based on

palaeoshoreline indicators, whose elevation requires correction for topographic changes due to

GIA and dynamic topography (Richards et al., 2023). The LAB depth maps are of significant

economic value, since the transition between thick and thin lithosphere on the edge of cratons

was recently shown to be strongly correlated with base metal prospectivity (Hoggard et al.,

2020). Base metals and subsidiary metals they co-occur with, such as cobalt and indium, are

key ingredients of many technologies that are required for an economy based on renewable en-

ergy, making a sustainable supply of such metals integral to the green transition. Correlations

between previously identified deposit locations and estimated LAB depth are used to constrain

the 195 km LAB depth contour as the most powerful indicator of deposit location.
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Finally, Chapter 6 returns to Antarctica, and an exploration of the relationship between

time-dependent rheology, ice sheet stability, and sea level. A blueprint for the implementa-

tion of experimental parameterisations of mantle rock viscoelasticity into continuum mechanics

models is developed. This provides the basis for incorporating spatial and temporal variations

in mantle viscosity into future GIA models. Designed to accompany such models, a revised

parameterisation of mantle rock viscoelasticity is developed. This parameterisation is fitted to

the laboratory data of Yamauchi and Takei (2016), and includes a set of functions which are

computationally efficient to calculate. These steps ensure that any such GIA implementation

is faithful to the most recent data pertaining to mantle rock deformation behaviour, and is

computationally feasible. In order to estimate the importance of time-dependent viscosity in

affecting ice sheet stability and sea level, the revised parameterisation is applied to a simple

model of Antarctic GIA. It is demonstrated that, for short ice melting timescales, up to 52%

more near-field deformation is induced by the time-dependent rheological model, as compared

to a reference Maxwell viscoelastic model. The results have important implications for studies

seeking to invert deformation observations (e.g., sea level and GPS records) for estimates of

mantle structure, as well as those seeking to model future sea level in response to possible

deglaciation scenarios.
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Chapter 2

A Bayesian Inverse Method for

Calibrating Experimental

Parameterisations of Mantle Rock

Viscoelasticity

2.1 Introduction

Earth’s interior thermomechanical structure controls spatial and temporal patterns of deforma-

tion on its surface. For example, three-dimensional variations in mantle temperature dictate

the location of density anomalies, driving viscous mantle convection behaviour over timescales

of millions of years. Variations in lithospheric thickness, mantle viscosity and elastic modulus

govern viscoelastic deformation in response to events altering surface loading, such as glacial

collapse, over timescales spanning 10 to 10,000 years. Therefore, accurate models of Earth’s

mantle structure are critical for a variety of geodynamic modelling applications. Since it is

not possible to directly access and observe Earth’s interior, its structure must be inferred via
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geophysical proxy. In this context, a geophysical proxy is a class of information produced by

some geophysical phenomenon, and detectable from Earth’s exterior, which contains sensitivity

to its interior structure. A range of useful proxies can be extracted from seismic data, including

phase velocity, attenuation, and anisotropy.

Images of how seismic shear-wave velocity (VS) varies from location to location within

Earth’s interior, obtained by seismic tomography, are a powerful tool for estimating mantle

thermal structure due to the strong sensitivity of VS to temperature (Faul and Jackson, 2005).

Laboratory experiments show sub-solidus temperature changes can induce up to 20% variations

in VS (Priestley and McKenzie, 2013, and references therein). Although volatiles and compo-

sition may also influence VS (Karato and Jung, 1998; Lee, 2003), recent studies show close

agreement between xenolith-derived temperature profiles and those inferred from tomographic

models using parameterisations that ignore the potential impact of compositional heterogeneity

in the asthenosphere and lower lithosphere, indicating that temperature is indeed the domi-

nant control on shallow mantle VS variation (Hoggard et al., 2020; Klöcking et al., 2020).

Temperature- and pressure-dependent parameterisations of mantle density and viscosity can

be applied to estimate how spatial variations in temperature translate into mechanical proper-

ties. Therefore, maps of three-dimensional VS structure can be used to infer mantle structure

given a suitable modelling framework, which the purpose of this chapter is to introduce.

Firstly, theoretical relationships between VS and output parameters such as temperature,

T , and viscosity, η, are discussed. It is shown why relationships grounded in laboratory ob-

servations are needed to accurately relate seismic observations to mantle structure. Secondly,

a set of unknown parameters required for conversion between VS and T is introduced. The

presence of these unknown parameters motivate the use of an inverse modelling framework,

incorporating additional geophysical constraints, in order to produce a self-consistent set of

output predictions. Thirdly, a probabilistic implementation of the inverse theory is presented,
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which allows uncertainty in the output predictions to be estimated via a robust characterisation

of free parameter covariances.

2.2 Parameterising The Relationship Between VS and T

The sensitivity of VS to temperature derives from the effect temperature has on the mechanical

properties of mantle rock, which in turn control the characteristics of shear-wave propagation.

Therefore, in order to make use of VS information and gain insight into upper mantle structure,

a model capturing this sensitivity must be employed.

2.2.1 Empirical Parameterisations

In the past, most studies took advantage of an empirical approach for converting between VS

and temperature, viscosity and density (e.g., Austermann et al., 2013; Davies et al., 2019;

Milne et al., 2018; Steinberger et al., 2019). For example, the following prescription was used

by Austermann et al. (2013):

δ ln ρ(r, θ, φ) = ∆ρ
VS
(r)δ lnVS(r, θ, φ), (2.1)

δT (r, θ, φ) = − 1

α(r)
δ ln ρ(r, θ, φ), (2.2)

η(r, θ, φ) = ηr(r)e
−ϵδT (r,θ,φ). (2.3)

In these equations, the vector (r, θ, φ) represents a location within Earth’s interior, specified

in terms of radius, latitude and longitude, respectively. VS is the shear-wave velocity, and ρ, T

and η are the density, temperature and viscosity, respectively. α(r) is the coefficient of thermal
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expansion. ∆ρ
VS
(r) is a temperature-independent scaling factor connecting relative changes in

VS to relative changes in density, and ϵ is a free parameter controlling the sensitivity of viscosity

to changes in temperature. Combining Equations 2.1 and 2.2, a direct mapping between VS

and temperature is obtained.

δT (r, θ, φ) = −∆ρ
VS
(r)

α(r)
δ lnVS(r, θ, φ). (2.4)

Given that VS and T within Earth’s interior are inversely proportional, it can be inferred

from Equation 2.4 that the scaling factor ∆ρ
VS
(r) is a positive quantity. The sign of ∆ρ

VS
(r)

appears innocuous until the mechanics of wave propagation in a viscoelastic medium are con-

sidered, in which transverse wave velocity and density are inversely proportional, VS ∝ ρ−
1
2 .

Therefore, if ∆ρ
VS
(r) is representative of the expression

∂ρ

∂VS
∝ −ρ 3

2 , (2.5)

and indeed ∂ρ
∂VS

is often used as the symbolic reference to the scaling factor, it appears that

∆ρ
VS
(r) should be a negative quantity. To resolve this apparent disagreement, it must be

understood that temperature-induced changes in shear-wave velocity do not occur at constant

shear modulus, MU . The quantity ∆ρ
VS
(r) implicitly captures variation in VS due to changes in

both ρ and MU , for a given temperature-induced change in density.

Although such empirical scalings obscure the mechanics underlying VS–T sensitivity, this

does not necessarily mean that they are unable to relate velocities obtained from seismic tomog-

raphy to mantle thermal structure. However, ∆ρ
VS
(r) inherently assumes that at a given depth,

a percentage change in VS corresponds to a constant percentage change in ρ and T , irrespective

of the initial VS prior to perturbation. In fact, significant viscosity reductions observed near the

solidus temperature in laboratory experiments on mantle rock and associated analogues (Faul
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et al., 2007; McCarthy and Takei, 2011; Takei, 2017; Yabe and Hiraga, 2020), and corroborated

by geophysical observations (Richards et al., 2020a), indicate that the relationship between VS

and T is highly non-linear. Empirical scalings such as that presented above fail to appropriately

capture this relationship, and therefore inaccurately relate VS to mantle structure.

2.2.2 Laboratory Parameterisations

In order to accurately relate VS to T , empirical scalings are avoided, and instead the physical

parameterisation of Yamauchi and Takei (2016) is employed, which captures the underlying

temperature-dependent viscoelastic behaviour of mantle rock based on a series of forced os-

cillation experiments. Such experiments were conducted using a polycrystal analogue of the

olivine-basalt system called borneol-diphenylamine. The fundamental assumption of Yamauchi

and Takei (2016) is that, to within a set of material-specific scalars, the phenomenological

behaviour of mantle rock and the synthesised rock analogue under mechanical testing is the

same. This is likely to be a valid assumption because borneol and diphenylamine form a binary

eutectic system with an equilibrium microstructure similar to that of olivine and basalt, and

borneol is known to deform via the same types of diffusion and dislocation creep processes as

minerals (Yamauchi and Takei, 2016). Since borneol has a much smaller melting temperature

than mantle rock, experiments conducted by Yamauchi and Takei (2016) at room temperature

tap into the same normalised frequency range as seismic waves at the near-solidus tempera-

ture conditions relevant to the upper mantle. Crucially, this makes their findings relevant to

studies of the upper mantle as imaged by seismic waves. Yamauchi and Takei (2016) were

able to attribute significant non-linearity in the VS(T ) relationship at homologous tempera-

tures 0.92 ≤ T/TS ≤ 1 to the effect of pre-melting, a process which enhances diffusionally

accommodated grain boundary sliding and high-frequency seismic attenuation.

Forced oscillation experiments involve applying a sinusoidal-in-time stress σ(t) = Re
[︁
σ∗(t)

]︁
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to the material in the form of

σ∗(t) = σ0 exp(−iωt), (2.6)

and measuring the associated strain response ε(t) = Re
[︁
ε∗(t)

]︁
, where

ε∗(t) = J∗(ω)σ∗(t). (2.7)

In Equation 2.6, σ0 is the magnitude of the applied stress, i =
√
−1, ω is the angular frequency

of the applied oscillatory stress, and t refers to elapsed time. In Equation 2.7, J∗(ω) = J1+iJ2 is

known as the complex compliance. J∗(ω) encodes the frequency- and thermal state-dependent

viscoelastic properties of the material under testing, which determine its time-dependent re-

sponse to loading. Expanding the right-hand-side of Equation 2.7 in terms of real and imaginary

components of J∗(ω), the strain response can be expressed as

ε(t) = Re
[︁
(J1 + iJ2)σ0 exp(−iωt)

]︁
, (2.8)

⇒ ε(t) = J1σ0 cos(ωt) + J2σ0 sin(ωt). (2.9)

An equivalent representation of Equation 2.9 can be found using a compound-angle trigono-

metric expansion as follows

ε(t) = ε0 cos(ωt+ ϕ), (2.10)

⇒ ε(t) = ε0 cos(ϕ) cos(ωt)− ε0 sin(ϕ) sin(ωt). (2.11)

Therefore, the strain response is sinusoidal-in-time, like the applied stress, but with a modified

amplitude and phase. By comparison with Equation 2.9, some useful relations between the
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complex compliance terms and the form of the strain response can be established:

J1 =
ε0
σ0

cos(ϕ), (2.12)

J2 = − ε0
σ0

sin(ϕ). (2.13)

These equations show that by measuring the relative amplitude of the strain response, ε0/σ0,

and its phase delay with respect to the applied stress, ϕ, J1 and J2 at a temperature and

frequency of interest can be calculated, and indeed these principles are applied by Yamauchi

and Takei (2016) in their experiments.

To build further intuition for the components of J∗(ω), consider again Equation 2.9. The real

component of the complex compliance, J1 = Re [J∗], is a multiplicative prefactor of the cosine

component of the strain response, which is in-phase with the applied stress. The imaginary

component of the complex compliance, J2 = Im [J∗], is a prefactor of the sine component of

the response, which is out-of-phase with the applied stress. Calculating the work done during

each oscillatory cycle of applied stress,

Ed =

∮︂
σdε =

∫︂ 2π/ω

0

σ
dε

dt
dt, (2.14)

it can be found that

Ed =

∫︂ 2π/ω

0

σ0 cos(ωt)
d

dt
(J1σ0 cos(ωt)− J2σ0 sin(ωt)) dt, (2.15)

⇒ Ed = ωσ2
0

∫︂ 2π/ω

0

(︁
−J1 cos(ωt) sin(ωt)− J2 cos(ωt) cos(ωt)

)︁
dt, (2.16)
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⇒ Ed = πσ2
0 (0 · J1 + 1 · J2) = πσ2

0J2. (2.17)

Therefore the out-of-phase compliance term, J2, is responsible for energy dissipation. It

can be shown that the maximum energy stored within each cycle is given by ES = 1
2
σ2
0J1,

and thus that the in-phase compliance term, J1, is responsible for energy storage (Nowick and

Berry, 1972). These two components of the complex compliance are referred to as the loss

compliance and storage compliance, respectively. Conveniently, both shear-wave velocity, VS,

and attenuation, Q−1, can be expressed directly in terms of the loss and storage compliance,

VS =
1√
ρJ1

[︄
1 +

√︁
1 + (J2/J1)2

2

]︄− 1
2

≈ 1√
ρJ1

, (2.18)

Q−1 =
J2
J1

[︄
1 +

√︁
1 + (J2/J1)2

2

]︄− 1
2

≈ J2
J1
, (2.19)

where ρ is the density of the medium (McCarthy and Takei, 2011). A parameterisation of

complex compliance in terms of temperature, pressure and forcing frequency was constructed

by Yamauchi and Takei (2016) on the basis of their laboratory data as follows

J1 = JU

⎛
⎜⎝1 +

ABτ
αB
S

αB

+

√
2π

2
APσP

⎛
⎝1− erf

[︄
ln
(︁
τP/τS

)︁
√
2σP

]︄⎞
⎠

⎞
⎟⎠ , (2.20)

J2 = JU

⎛
⎝τS +

πABτ
αB
S

2αB

+
π

2
AP exp

[︄
− ln2(τP/τS)√

2σP

]︄⎞
⎠ , (2.21)

where JU is the unrelaxed compliance, which serves as the infinite-frequency (elastic) limit of

the complex compliance and is inversely related to the unrelaxed shear modulus by JU = 1/MU .

AB = 0.664 and αB = 0.38 are the amplitude and slope of the high-temperature background

relaxation, and AP and σP are the temperature-dependent amplitude and width of a high-
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frequency relaxation peak, defined by

AP (Θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.01 if Θ < 0.91,

0.01 + 0.4(Θ− 0.91) if 0.91 ≤ Θ < 0.96,

0.03 if 0.96 ≤ Θ < 1,

0.03 + β(ϕ) if Θ ≥ 1,

(2.22)

and

σP (Θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if Θ < 0.92,

4 + 37.5(Θ− 0.92) if 0.92 ≤ Θ < 1,

7 if Θ ≥ 1,

(2.23)

where Θ = T/TS is the homologous temperature, T is the temperature, TS is the solidus

temperature, ϕ is the melt fraction and β(ϕ) is the direct poroelastic effect of melt. The

factor β(ϕ) can be ignored for upper mantle applications in which melt retention is expected

to be low enough that β(ϕ) has negligible impact (McKenzie, 2000; Richards et al., 2020a).

In Equations 2.20 and 2.21, τP = 6 × 10−5 is a constant, representative of the experimentally

determined centroid timescale of the high-frequency relaxation peak. τS represents the seismic

wave period, normalised by 2πτM , in which τM = ηJU is the Maxwell relaxation timescale, and

η is the shear viscosity given by

η = ηr

(︃
d

dr

)︃m

Aη(Θ) exp

[︄
EA

R

(︃
1

T
− 1

Tr

)︃]︄
exp

[︄
VA
R

(︃
P

T
− Pr

Tr

)︃]︄
, (2.24)

where ηr = η(d = dr, T = Tr, P = Pr) is the reference viscosity at reference temperature

(Tr), pressure (Pr) and grain size (dr), m is the grain size exponent, EA activation energy, VA

activation volume, and R = 8.3145 JK−1 mol−1 is the molar gas constant. Aη is a homologous-
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temperature dependent factor, similar to AP and σP , incorporating the extra reduction in

viscosity just below the solidus temperature caused by pre-melting, defined as

Aη(Θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Θ < Θη,

exp
[︂
− Θ−Θη

Θ−ΘΘη ln γ
]︂

if Θη ≤ Θ < 1,

γ−1 exp(−γϕ) if Θ ≥ 1,

(2.25)

where γ(≥ 1) represents the factor of additional viscosity reduction and Θη is the normalised

temperature above which pre-melting enhances the activation energy EA by ∆EA. As with AP

and σP , the influence of melt is ignored and therefore Aη = γ−1 at super-solidus temperatures,

Θ ≥ 1.

2.3 Inverse Approach to Conversion Between Upper Man-

tle VS and T

Application of the complex compliance parameterisation of Yamauchi and Takei (2016) in

principle allows for conversion from temperature to VS and Q−1 via J∗, as well as vice versa,

using Equations 2.18 and 2.19, but is dependent on four additional assumptions. Firstly, a

parameterisation of upper mantle density must be selected, ρ = ρ(P, T ), for which the approach

of Grose and Afonso (2013) is followed. Temperature-dependent expansivity is incorporated

using the linear relationship

α(T ) = α0 + α1T, (2.26)
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where α0 = 2.832 × 10−5 K−1 and α1 = 0.758 × 10−8 K−2. The effect of pressure on thermal

expansivity is incorporated using the following form

α(P, T )

α(T )
=

(︃
V0
V

)︃

T

exp

⎡
⎣(δT + 1)

(︄(︃
V0
V

)︃−1

T

− 1

)︄⎤
⎦ , (2.27)

where δT = 6 is the Anderson-Grüneisen parameter. The direct effect of pressure on density

is incorporated by calculating the isothermal volume change, (V0/V )T , associated with a given

pressure using the third-order Birch-Murnaghan equation of state

P =
3

2
K0

[︄(︃
V0
V

)︃7/3

T

−
(︃
V0
V

)︃5/3

T

]︄⎡
⎣1 + 3

4

(︃
∂K

∂P

)︃

T

(︄(︃
V0
V

)︃2/3

T

− 1

)︄⎤
⎦ , (2.28)

where K0 = 130 GPa is the bulk modulus at zero pressure and
(︁
∂K/∂P

)︁
T

= 4.8 is the

pressure derivative of the bulk modulus at constant temperature. The isothermal density

change associated with (V0/V )T is then

ρ(P ) = ρ0

(︃
V0
V

)︃

T

. (2.29)

Combining both temperature and pressure dependencies, the complete parameterisation is given

by

ρ(P, T ) = ρ(P )

[︄
1− α(P, T )

α(T )

(︃
α0(T − T0) +

α1

2
(T 2 − T 2

0 )

)︃]︄
, (2.30)

where surface temperature T0 = 273 K.

Secondly, the unrelaxed shear modulus must be parameterised, for which the following linear

relationship is assumed

MU(P, T ) = µ0 +
∂µ

∂T
(T − T0) +

∂µ

∂P
(P − P0), (2.31)
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where µ0 is referenced to surface temperature T0 = 273K and pressure P0 = 101 kPa, and all

three of µ0, ∂µ/∂T and ∂µ/∂P are constants.

Thirdly, the depth-dependent solidus temperature within the upper mantle must be param-

eterised, in order to be able to relate homologous temperatures provided in the compliance

parameterisation of Yamauchi and Takei (2016) to absolute temperatures. To do so, the linear

relationship

TS(z) = TS(z0) +
∂TS
∂z

(z − z0) (2.32)

is employed, where TS(z0) represents the reference solidus temperature at z0 = 50 km depth.

Finally, suitable values for the free parameters contained within the complex compliance frame-

work must be selected. These free parameters are sevenfold: µ0, ∂µ/∂T , ∂µ/∂P regulate the

instantaneous, elastic component of the deformation response, meanwhile ηr, EA, VA and ∂TS

∂z
,

control the time-dependent anelastic (fully recoverable) and viscous contribution. Together,

these parameters are referred to as “viscoelasticity parameters”.

The viscoelasticity parameters cannot be constrained directly from the laboratory data

of Yamauchi and Takei (2016), since the former apply specifically to the upper mantle. A

forward-modelling approach is typically taken to estimate them, by combining an assumed

mantle composition with a computational Gibbs free energy minimisation technique to esti-

mate µ0, ∂µ/∂T , and ∂µ/∂P , and using these values to calculate the elastic component of

VS(P, T ). A correction for anelasticity is then applied using values of ηr, EA, VA, TS(z0) and

∂TS

∂z
compiled from laboratory-based experiments on mantle minerals. There are two key draw-

backs to this method. The first is that applying experimentally determined parameter values

to mantle conditions requires extrapolation of grain size-dependent behaviour across several

orders of magnitude, the validity of which remains unclear. The second is that discrepancies

between tomographic velocity models are introduced by subjective choices such as regulari-

sation, model parameterisation and choice of reference model (Richards et al., 2020a). The
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forward approach then becomes problematic as, for a constant choice of viscoelasticity param-

eters, highly discrepant physical predictions are generated depending on the chosen velocity

model, as modelling choices particular to a given tomographic model are propagated.

To tackle these issues and ensure a conversion consistent with geophysical data pertaining

to the region of interest, the viscoelasticity parameter space is instead calibrated against a

suite of regional temperature, attenuation and viscosity constraints (Priestley and McKenzie,

2006, 2013; Richards et al., 2020a). A regional calibration is preferred to using viscoelasticity

parameters obtained from a global study, since the former approach ensures consistency with

the chosen tomographic velocity model. Calibration can be achieved within the framework of a

Bayesian inversion, incorporating stochastic sampling to characterise the model space. The set

of samples obtained can then be used to propagate uncertainties in the viscoelasticity param-

eters into formally quantified uncertainties in the resulting rheological model. Two additional

sources of uncertainty are not directly modelled in this process. The first is tomographic uncer-

tainty, which is ignored when converting velocities into thermomechanical parameter estimates.

This uncertainty is partially mitigated by the calibration procedure, which ensures that VS val-

ues from the chosen velocity model are consistent with independent geophysical constraints

on upper mantle structure. The second is a phenomenological source of uncertainty, deriving

from the assumption that the parameterisation of Yamauchi and Takei (2016) is an accurate

representation of upper mantle viscoelasticity. This assumption is investigated in more detail

in Chapter 6. It should be noted that the inverse modelling framework developed herein is

designed to be equally applicable to any choice of parameterisation. Readers interested in the

extent to which different rheological parameterisations agree within the context of Antarctic

upper mantle structure are invited to view the work of Ivins et al. (2021).
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2.3.1 Independent Geophysical Data Sets

For the purposes of demonstrating the viscoelasticity parameter calibration procedure, Antarc-

tica will be used as the region of interest. The tomographic velocity model ANT-20 (Lloyd

et al., 2020) will be employed, which provides estimates of VS = VS(r, θ, φ) with regional-scale

resolution (∼ 100 km), and thus serves as a suitable starting point for mapping upper man-

tle temperature and viscosity. Further detail on Antarctica as a choice of setting, as well as

the tomographic velocity model ANT-20, is provided in Chapter 3. Independent constraints

on mantle properties are collated and used as data sets in a joint inversion of the viscoelas-

ticity parameters. These data are complementary in that they are collected over a range of

depths (0 km to 400 km) and temperatures (0 ◦C to 1500 ◦C), and help to tackle the issue of

non-uniqueness via their different sensitivities to a given change in the parameter space.

The first constraint used is the observed VS(T ) relationship in conductively cooling oceanic

lithosphere. VS data from a tomographic model may be compared to thermal structure obtained

via numerical modelling when binned by age and depth (Richards et al., 2020a). The 15 km

maximum vertical resolution of ANT-20 informs the decision to sample VS and T data points

in 25 km bins over the range 50 to 125 km. This depth range is chosen to avoid non-negligible

compositional effects at shallow depths due to mantle melting and the potential incorporation

of spurious low velocity structure resulting from the bleeding of crustal velocities down into

deeper depth ranges.

To construct a suitable thermal model for Antarctica, a Crank-Nicholson finite difference

scheme with a predictor-corrector step is used to numerically integrate the heat diffusion equa-

tion. The implementation set out by Richards et al. (2018) and Richards et al. (2020b) is

followed, in which the heat capacity, CP , mantle density, ρ, and thermal conductivity, k, vary

as a function of temperature, T , and composition, X. The latter two variables are also depen-

dent on pressure, P .
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Figure 2.1: Thermal modelling of Antarctic oceanic lithosphere. (a) Thermal model fit
to oceanic age-depth data from the Antarctic oceanic region placed into 2.5 Ma bins (Richards et
al., 2018). (b) Same as (a) for age-heat flow data (Richards et al., 2018). (c) Plate cooling model
solution constructed using a Crank-Nicholson finite-difference scheme to numerically solve the
1-D heat-diffusion equation (Richards et al., 2018; Richards et al., 2020b). Antarctica-specific
regional data are used to capture any local deviation from the globally averaged thermal trend.
Model isotherms (◦C) given by black curves in panel (c).
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Mantle potential temperature, plate thickness and zero-age ridge depth are optimised by

assessing the misfit to heat flux and subsidence data located within the footprint of the ANT-20

seismic tomographic model. The result is a best-fitting model describing the thermal structure

beneath the oceans surrounding Antarctica (see Figure 2.1), suitable for comparison with VS

measurements over the same age-depth bins, such that the regional oceanic VS(T ) relationship

can be obtained for the lithosphere. A mantle potential temperature of TP = 1420 ± 50 ◦C is

estimated, approximately 5% hotter than the geochemically constrained global average TP =

1333 ◦C (Richards et al., 2018). The regional best-fitting value of TP = 1420 ◦C is consistent

with regional geochemical estimates of mantle potential temperature, which span the range

1314-1550 ◦C, with an average 1385 ± 40 ◦C (Figure 3.1). Although these constraints are

only available along the circum-Antarctic ridge system, they are nevertheless indicative of

anomalously hot mantle beneath the Southern Ocean. In the inversion, VS measurements are

compared to inferences of VS from temperature at each age-depth bin (Figure 2.3a).

Since the lithospheric thermal model is only applicable at depths of z ≤ 125 km, a TP =

1420 ◦C (1693 K) isentrope is used to characterise temperatures in the convective portion of

the mantle, over the depth range z = 225 to 400 km. Here, temperature is calculated according

to

T = TP exp

(︃
αgz

CP

)︃
, (2.33)

where α is thermal expansivity, g, acceleration due to gravity, and z, depth. This serves as

the second constraint in the inversion, whereby VS measurements are compared to inferences

of VS from temperature at each depth bin (Figure 2.3b). The third constraint is the QRFSI12

attenuation model of Dalton et al. (2008), which provides an average radial profile of seismic

attenuation at depths z = 150 to 400 km beneath Antarctic ocean floor of age ≥ 100 Ma. Both

the isentropic temperature and attenuation profiles are sampled at 25 km intervals to match
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the chosen VS binning resolution (Figure 2.3c). To assess the misfit between data and model

for these two constraints, tomographic VS measurements are compared to VS inferred from

isentropic temperature, and attenuation measurements are compared to attenuation inferred

from tomographic VS, respectively. The final constraint used is a single estimate for the average

steady state shear viscosity between 225 to 400 km depth, η = 1020±1 Pa s (Lau et al., 2016,

based on GIA modelling of relative sea level and geodetic data assuming a Maxwell rheology, i.e.

diffusion creep). Here, the viscosity constraint is compared to the corresponding depth-averaged

viscosity inferred from VS (Figure 2.3d).

2.4 Bayesian Modelling Framework

Formulating the inverse problem in a Bayesian framework entails treating each of the model

parameters as random variables. There are several reasons why this is favourable to taking

a deterministic approach. By incorporating hyperparameters, the reported uncertainties on

each data set are scaled to more appropriately capture the misfit between data and model (see

Eilon et al., 2018). This approach allows for integration of multiple constraints into a joint

inversion without the need to use subjective weightings on each data set (Fukuda and Johnson,

2010). Secondly, prior information on the nature of the parameter space can be incorporated.

Thirdly, the use of statistical sampling enables much more informative and rigorous treatment

of uncertainty, and a natural way to propagate this into uncertainty in physical parameters of

interest.

The objective of the inversion is to numerically characterise the a posteriori probability

density function p(X |D). This function describes how the probability of an infinitesimal vol-

ume, dX , of the model space, X , varies as it is traversed through, given the observed data. In

the following, a particular choice of model will be referred to using the superscript notation,

X i. A particular component of the model will be referred to using the subscript notation, Xi.
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The model space X = X (m,σ) contains seven viscoelasticity parameters

m =
[︁
µ0, ∂µ/∂T , ∂µ/∂P , ηr, EA, VA, ∂TS/∂z

]︁T
, (2.34)

as well as three hyperparameters

σ = [σ1, σ2, σ3]
T . (2.35)

An individual hyperparameter is used to tune the uncertainties for each data set. A fourth

hyperparameter associated with the viscosity constraint is omitted, due to the instability of

this parameter when used to constrain a data set containing only a single data point. The

posterior density, p(X |D), is dependent on the outcome of the experiments undertaken, via

the data, D. Since it is usually not possible to access p(X |D) analytically, stochastic methods

are used instead.

Bayes’ theorem states that the a posteriori density, p(X |D), is linked to the a priori infor-

mation that is known about the model space, as well as the likelihood of obtaining the observed

data given a particular model, which are described by the density functions, p(X ) and p(D|X ),

respectively. The relationship is expressed mathematically as

p(X |D) =
p(X )p(D|X )

p(D)
. (2.36)

The a priori probability density on the data, p(D), takes on a fixed value for a given set

of observations and is thus treated as a normalisation. This allows us to compare probability

densities between two different models X 1 and X 2 by evaluating the ratio

p(X = X 1|D)

p(X = X 2|D)
=
p(X = X 1)p(D|X = X 1)

p(X = X 2)p(D|X = X 2)
. (2.37)

Therefore, to estimate the variation in posterior density one needs a suitable method for
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calculating the prior and likelihood functions. The prior should be selected as a function

which agnostically summarises the knowledge one has about the model space before performing

the inversion, usually in the form of a uniform or Gaussian distribution. Here a Gaussian

distribution is used to summarise prior knowledge of each parameter Xi,

p(Xi) =
1√
2πsi

exp

(︄
−(Xi − µi)

2

2s2i

)︄
, (2.38)

where µi and si represent the prior estimate and its uncertainty respectively. This distribution is

useful as it enforces a non-zero probability density for any choice of model, X i, and enables us to

use conservative uncertainty estimates for model parameters based on experimental studies (Ta-

ble 2.1). The priors on the elastic sector of the parameter space, X elastic = {µ0, ∂µ/∂T , ∂µ/∂P},

were calculated by sampling a range of thermochemical states, S = {X,P, T}, where X is py-

rolitic composition defined in terms of the proportion of harzburgite to basalt. A database

containing the dependence of elastic shear modulus on S was utilised to build a prior pic-

ture of X elastic. This database was constructed using the software Perple X according to the

method laid out by Cobden et al. (2008), using the compilation of thermodynamic parameters

of Stixrude and Lithgow-Bertelloni (2011). Activation energy (EA), activation volume (VA)

and the solidus gradient (∂TS/∂z) were estimated by summarising literature reported values

(Hirth and Kohlstedt, 2004; Jain et al., 2019). Reference viscosity (ηr) was estimated using the

following equation,

ηr =
dpr
A

exp

(︃
EA + PrVA

RTr

)︃
, (2.39)

where the reference thermodynamic state is given by Pr = 1.5 GPa and Tr = 1200 ◦C, dr =

1 mm is the reference grain size, p its exponent, and A is a scaling coefficient. By sampling

A, p, EA and VA over suitable ranges retrieved from the literature (Hirth and Kohlstedt, 2004;

Jain et al., 2019), a summary of ηr could be established. The assumption that each model
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Model parameter i Prior µi Prior si Posterior µi Posterior si MAP

µ0 (GPa) 81 8 74.8 0.4 74.8
∂µ/∂T (GPaK−1) −0.014 0.003 −0.0129 0.0005 −0.0131
∂µ/∂P (unitless) 1.6 0.2 2.04 0.06 2.09
log10 ηr (Pa s) 22 3 23.2 0.7 22.9
EA (kJmol−1) 400 200 542 146 476
VA (cm3mol−1) 6 4 5.35 0.32 5.02
∂TS/∂z (K km−1) 2.25 2.25 1.63 0.14 1.65

log10 σ1 (unitless) 0 1 −0.317 0.024 −0.328
log10 σ2 (unitless) 0 1 0.093 0.148 0.136
log10 σ3 (unitless) 0 1 0.588 0.105 0.514

Table 2.1: Prior and posterior estimates of the inversion parameters. The inversion
parameters are made up of the seven material-dependent components of YT16, denoted by
m, as well as the three hyperparameters, denoted by σ. Prior µi and si represent the mean
and standard deviation of the Gaussian prior distribution for each parameter. Posterior µi

and si are estimates of the mean and standard deviation of the posterior distribution for each
parameter. MAP represents the maximum a posteriori model.

parameter is conditionally independent is taken, allowing the multiplication of the prior on

each parameter to form an overall prior density given by

p(X ) =

i=Np∏︂

i=1

1√
2πsi

exp

(︄
−(Xi − µi)

2

2s2i

)︄
, (2.40)

where Np is the number of parameters within the model.

The data points within each data set are assumed to be independent, allowing use of a

Gaussian distribution to describe the likelihood function for each data set,

p(dk|X (m,σ)) =
1

(2πσ2
k)

Nk/2|Σk|1/2
exp

(︄
− 1

2σ2
k

(︂
dk − d̂k

)︂T
Σ−1

k

(︂
dk − d̂k

)︂)︄
. (2.41)

In this equation, dk represents the kth data set containing Nk data points, d̂k = d̂k(X ) the

corresponding model prediction, Σk the data covariance matrix containing the uncertainty on

each data point, and σk the hyperparameter weighting applied to the data set.

If the data sets are independent of each other, the overall likelihood function can be con-
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structed by simply multiplying together the likelihood function for each of the Nd data sets:

p(D|X (m,σ)) =

k=Nd∏︂

k=1

1

(2πσ2
k)

Nk/2|Σk|1/2
exp

(︄
− 1

2σ2
k

(︂
dk − d̂k

)︂T
Σ−1

k

(︂
dk − d̂k

)︂)︄
. (2.42)

2.4.1 Choice of Sampling Algorithm

Once a set of mathematical expressions for the prior and likelihood densities has been estab-

lished as above, a suitable algorithm must be selected to characterise the posterior space. The

Metropolis-Hastings algorithm is one of the most common methods for doing so and involves

generating a chain of models with associated posterior density values (Metropolis et al., 1953).

Given a current model X n, a proposal model Yn+1 is constructed according to the relation-

ship

Yn+1 = X n +P , (2.43)

where P ∼ N (0,Σproposal) and Σproposal is a suitable Np×Np proposal sampling covariance

matrix. For simplicity, this matrix is typically chosen to be diagonal. The proposal model is

accepted with probability

an = minimum

(︄
1,
p(Yn+1|D)

p(X n|D)

)︄
, (2.44)

where an is known as the acceptance ratio and is calculated using Equation (2.37). If the

proposal model is accepted one sets X n+1 = Yn+1. Otherwise the current model remains

and one sets X n+1 = X n. This process is repeated until the parameter space is suitably

explored. Since the probability of a model being accepted is proportional to its posterior

density, convergence towards optimal regions of the parameter space occurs. However, less

probable models still have a finite acceptance probability, meaning the procedure is also capable

of escaping local maxima (analogous to local minima observed in deterministic formulations).

To circumvent the issue that the evolution of samples is, at first, correlated with the initial
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starting point, the first 50% of trials are discarded as a so-called “burn-in” period. Only the

post burn-in set of samples are used in the analysis.

While powerful, the Metropolis-Hastings algorithm in its original form is not sophisticated

enough to perform the inversion efficiently, since strong trade-offs between model parameters

invalidate the use of a diagonal proposal covariance matrix. The precise form of Σproposal has

a strong impact on the average model acceptance rate a, which is optimised when a ≈ a∗,

where a∗ = 0.234 (Gelman et al., 1997). When Σproposal is too small, a large proportion of

models are accepted but only small steps around the model space are taken. When Σproposal is

too large, only a small proportion of models are accepted and so the inversion algorithm tends

to sample the same area of the model space for a prohibitively large number of trials, before

wildly jumping elsewhere. This applies when any region of the multi-dimensional proposal

covariance space is poorly estimated. Both situations lead to inefficient convergence towards

the posterior distribution and so, for a finite number of trials, inhibit achievement of ergodicity:

full exploration of the parameter space such that the discrete set of posterior samples converges

onto the underlying continuous posterior distribution. Therefore, the use of adaptive Metropolis

algorithms was investigated further, which are intended to improve the efficiency of the sampling

procedure.

Haario et al. (2001) serves as a good reference point for the implementation of such an algo-

rithm. It utilises the condition found by Gelman et al. (1997) that for a Metropolis algorithm

on Rd, the proposal is optimally scaled when the proposal state is generated according to

Yn+1 ∼ N
(︂
X n,Σproposal

)︂
, (2.45)

Σproposal = γΣX , (2.46)
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Select initial model X 0

Is n < ntrials?

Terminate algorithm and save
post burn-in models X i where
i = {nburn-in, ..., ntrials − 1}

Is n < 100?

Use fixed diagonal proposal
covariance matrix

Σn = Σ0

Σ0 =
(2.382)

d
Σ̂π

Use proposal covariance matrix
empirically calculated from

history of accepted models Zi

Σn = γnCov(Z0,Z1, ...,Zj)

and associated scale factor

γn = γn−1 + n−1/2(an−1 − a∗)

a∗ = 0.234

Stochastically perturb current
model to propose new model

Yn+1 = Xn + P

P ∼ N (0,Σn)

Calculate acceptance ratio

an = min

(
1,
p(Yn+1|D)

p(Xn|D)

)

Draw uniform random
number paccept∼U(0, 1)

Is an > paccept?
Accept proposal and
set Xn+1 = Yn+1

Reject proposal and
set Xn+1 = Xn

Yes

No

Yes No

Yes No

Figure 2.2: Flow chart representation of the Globally Adaptive Scaling Within
Adaptive Metropolis (GASWAM) adaptation (Andrieu and Thoms, 2008) of the
Metropolis-Hastings algorithm (Metropolis et al., 1953). Optimal acceptance ratio,
a∗ = 0.234, from Gelman et al. (1997). Initial proposal sampling covariance matrix based on
the proposition of Haario et al. (2001). Algebraic superscripts refer to a particular choice of
model.
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where ΣX is the posterior covariance matrix, and γ = 2.382

d
is the scaling coefficient. The

condition implies that the ideal proposal covariance matrix is a scalar multiple of the target

posterior covariance. Since the posterior is the object to be accessed and characterised via

the sampling procedure, and therefore an unknown quantity, employing a suitable proposal

is challenging. To address this issue, Haario et al. (2001) use an unbiased estimate of the

target posterior covariance, which can be calculated empirically based on the evolving chain

of generated samples. On the nth trial, where n − 1 samples have been generated so far, the

unbiased estimate of the posterior covariance is

Σ
X
=

1

n− 2

n−1∑︂

i=1

(︂
X i −X

)︂(︂
X i −X

)︂T
, (2.47)

where X = 1
n−1

∑︁n−1
i=1 Xi. The prefix “adaptive” therefore comes from the iterative adap-

tation of the proposal covariance matrix. For multi-dimensional parameter spaces (d > 1),

Σ
X

may take a considerable number of trials to resemble the true posterior covariance, ΣX ,

however, it should provide better performance than a fixed proposal setup. Substituting X

in Equation (2.47) for only the subset of trial models that were accepted, Z , may offer more

efficient convergence towards the posterior covariance. This approach is known as the “greedy

start” procedure, and and is made use of in this study (Figure 2.2). It should also be noted

that since Equation (2.47) relies on the history of all preceding trials, the chain of samples

is no longer Markovian. However, it has been proven that ergodicity still holds for adaptive

algorithms given some loose assumptions on the posterior (see Haario et al., 2001 for details).

Implementation of the Adaptive Metropolis algorithm shown above is theoretically easy,

however the optimal scaling factor, γ = 2.383

d
, does not work in practice if there are significant

correlations between the parameters in the model. In this case, the solution is to also update

γ adaptively. The Global Adaptive Scaling Within Adaptive Metropolis (GASWAM) scheme

employs this technique to estimate a suitable proposal covariance matrix
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Figure 2.3: Assessing fit of inverted viscoelasticity parameters to Antarctic geophys-
ical data. Fit of post burn-in models to the four geophysical data sets used to constrain the
inversion procedure (circles/error bars; see Section 2.3.1). Pale shaded regions represent the
99% credible interval, and dark shaded regions represent the 50% credible interval. (a) Plate
cooling model fit for depth ranges 50 to 75 km (blue), 75 to 100 km (purple) and 100 to 125 km
(red). (b) Adiabatic model fit for depth range 225 to 400 km. (c) QRFSI12 seismic attenuation
model fit at depths 150 to 400 km beneath ocean floor for ages ≥ 100 Ma. (d) Average viscosity
between 225 to 400 km compared to η = 1020±1 Pa s estimate.
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Σproposal = γn
(︂
Σ

X
+ ϵ1

)︂
, (2.48)

γn = γn−1 + ηn(an−1 − a∗). (2.49)

Here, the scaling factor to be used for the nth trial, γn, is updated by a factor proportional

to the difference between the current and ideal acceptance ratios, an−1 and a∗, respectively. The

function, ηn = n−1/2, is used to ensure adaptation decays in size as the simulation progresses.

The presence of the constant ϵ > 0 ensures ergodicity, and is chosen to be negligibly small

compared to the size of the proposal covariance matrix. This algorithm can be employed after

some fixed number of trials – long enough to provide a suitable first estimate of Σproposal – and

initiated with the traditional Adaptive Metropolis scaling factor γ0 = 2.382/d.

By using GASWAM to simultaneously update the shape and size of the proposal covariance

matrix, stabilisation of the inversion procedure can be achieved by enforcing the optimal accep-

tance ratio, such that a ≈ 0.234. This stability is ensured by looking at a suite of convergence

diagnostics including the running mean of each parameter as the trial proceeds, frequency den-

sity plots of each parameter, the potential scale reduction factor (Gelman et al., 1997; Roy,

2020), and the fit of the models to the data (Figure 2.3). The performance of the inversion

algorithm was also tested against synthetic data, verifying that it behaved as expected.

2.4.2 Synthetic Test

The first step in generating a synthetic data set is to specify a choice of model. This was

selected to lie reasonably close to the centre of the prior distribution, and the resulting model,

X synthetic, is shown in Table 2.2.

To generate a synthetic oceanic plate VS data set, the “true” plate temperatures described in
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Model parameter i Synthetic value MAP

µ0 (GPa) 75.0 74.9
∂µ/∂T (GPaK−1) −0.0130 −0.0129
∂µ/∂P (unitless) 2.00 1.98
log10 ηr (Pa s) 22.5 22.7
EA (kJmol−1) 400 454
VA (cm3mol−1) 4.00 4.91
∂TS/∂z (K km−1) 1.7 1.69

log10 σ1 (unitless) −1.00 −1.03
log10 σ2 (unitless) −1.04 −0.95
log10 σ3 (unitless) 0.24 0.19

Table 2.2: Choice of synthetic model parameters, X synthetic, and the corresponding
maximum a posteriori (MAP) inversion output.

Section 2.1 were converted into VS using the parameters of X synthetic. An analogous approach

was taken to generate a synthetic adiabatic VS data set, by converting the “true” adiabat

temperatures into VS, using the choice of synthetic viscoelasticity parameters X synthetic. The

attenuation data set was generated by converting the “true” ANT-20 VS into Q−1 using the

chosen synthetic model. The same method was applied to generate a set of viscosities, which

were then averaged to form a synthetic bulk viscosity data point. Random noise was added

to each data set by sampling from a Gaussian distribution, scaled to match the fractional

uncertainty on the respective real data sets.

Since each data set contains a finite number of data points, the true uncertainty on each

data set after the addition of random noise deviates from the width of the Gaussian distribution

used to generate it. Therefore instead of specifying the synthetic hyperparameters, their values

have been intrinsically created as a by-product of performing the noise addition procedure, and

should be calculated. To do this, the root-mean-squared (RMS) misfit between the synthetic

data prior to, and after, the addition of random noise was calculated. The hyperparameter was

then calculated as the ratio of this RMS misfit to the reported uncertainty.

The inversion is then completed as previously specified. The posterior set of samples fit

the synthetic data very well, giving us confidence that the underlying synthetic model space
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Figure 2.4: Assessing fit of inverted viscoelasticity parameters to synthetic data. Fit
of post burn-in models to the four synthetic data sets used to constrain the inversion procedure
(circles/error bars). Pale shaded regions represent the 99% credible interval, and dark shaded
regions represent the 50% credible interval. (a) Plate cooling model fit for depth ranges 50 to
75 km (blue), 75 to 100 km (purple) and 100 to 125 km (red). (b) Adiabatic model fit for depth
range 225 to 400 km. (c) Seismic attenuation model fit at 150 to 400 km depth. (d) Average
viscosity between 225 to 400 km depth compared to η = 1020±1 Pa s estimate.
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Figure 2.5: Difference between synthetic and inverted viscoelasticity parameters
reflected in predictions of Antarctic mantle viscosity. ANT-20 VS at 150 km depth con-
verted into steady state viscosity using synthetic viscoelasticity parameters, X synthetic, as well
as maximum a posteriori (MAP) viscoelasticity parameters, XMAP, taken from the synthetic
inversion. The discrepancy between the two viscosity predictions, log10ηsyn − log10ηMAP =
log10

(︁
ηsyn/ηMAP

)︁
, reveals close agreement between the “true” (synthetic) viscosity and the

MAP model.
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has been suitably explored (Figure 2.4). By propagating the ANT-20 VS model at 150 km

depth into viscosity using the YT16 parameterisation, it is possible to compare the physical

predictions of the synthetic model (ηsyn) to those of the maximum a posteriori (MAP) model

from the synthetic inversion (ηMAP, Figure 2.5). The discrepancy between the two predictions

satisfies the condition

log10

(︃
ηsyn
ηMAP

)︃
= log10

(︁
ηsyn
)︁
− log10 (ηMAP) < 0.01 (2.50)

across the vast proportion of Antarctica.

2.4.3 Summarising Posterior Outputs

The result of the inversion is a set of post burn-in models, X posterior. This serves as a discrete

set of samples over the continuous posterior density function, p(X |D). A greater sampling

density is indicative of a more probable region of the model space. Since the sampled posterior

distribution (ignoring hyperparameters) is seven-dimensional, it cannot be visualised as a whole.

Instead, the sampling density is calculated for each combination of model parameters, Xi and

Xj. To achieve this, the posterior space of each parameter is discretised into 1, 000 blocks,

spanning the range of values over which this parameter was sampled. This results in a step-size

given by

hi =
maximum(Xi)−minimum(Xi)

1, 000
. (2.51)

The sampling density is then calculated as

ρij (x, y) = nij (x, y) /Aij, (2.52)

where (x, y) is the grid reference pertaining to each of the 1, 000 × 1, 000 discrete areas in
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which density values are calculated, nij (x, y) is the corresponding number of posterior samples,

and Aij = hihj is the corresponding area. To yield further information from the inversion

output, the model samples and their corresponding physical predictions must be summarised

mathematically. The expectation value of each parameter can be estimated using the discrete

summation

Ê(Xi) =
1

Ns

Ns∑︂

j=1

X j
i , (2.53)

where Ns is the number of discrete model samples (Gallagher et al., 2009). The corresponding

variance of each parameter may be estimated using the formula

V̂ (Xi) =
1

Ns − 1

Ns∑︂

j=1

(︂
X j

i − Ê(Xi)
)︂2
. (2.54)

Although it is helpful to verify that the posterior distribution obtained lies within a sen-

sible region of the model space, the vectors Ê(X ) and V̂ (X ) do not tell the full story. The

viscoelasticity parameters, X , combined with the adopted parameterisation of complex compli-

ance, serve as a means for converting VS into physical predictions of temperature, T , viscosity,

η, and density, ρ. The objective is therefore to estimate the expectation value and variance

of functions of the model f(X ), rather than the model itself. This can be achieved easily, by

constructing a vector, F , where each component is calculated according to the formula

F i = f(X i). (2.55)

The expectation value and variance of the physical prediction can be estimated analogously to

equations (2.53) and (2.54), resulting in the equations

Ê(F) =
1

Ns

Ns∑︂

i=1

F i, (2.56)
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and

V̂ (F) =
1

Ns − 1

Ns∑︂

i=1

(︂
F i − Ê(F)

)︂2
. (2.57)

The estimates for the expectation value, Ê(F), and variance, V̂ (F), are referred to as the

average and uncertainty, respectively. If it is not practical to calculate all NS values of F i, due

to computational expense, a subset NU of the overall set of post burn-in models may be used

(see Section 3.2). The relationship between the uncertainty on a physical prediction, V̂ (f(X )),

and the uncertainty on the underlying model parameters, V̂ (X ), is dependent on the sensitivity

of f(X ) to each parameter, Xi (i.e., the gradient, ∂f(X )/∂Xi), and the covariance structure

of the model, ΣX (Champac and Garcia Gervacio, 2018). In the case of the anelasticity

parameterisation, T (X ) and η(X ) are non-linear functions of VS, complicating the analytical

calculation of their expectation value and variance. This highlights one of the key benefits of

taking a Bayesian approach, as it provides a simple way of propagating uncertainties, using the

discrete summaries of equations (2.56) and (2.57).

2.5 Analysing Posterior Parameter Distributions

The posterior distribution of viscoelasticity parameters estimated in this study is compared in

Table 2.3 to the values obtained by Richards et al. (2020a) via deterministic inversion. The

mean posterior parameter values agree with those of Richards et al., 2020a to within two stan-

dard deviations, with the exception of ∂µ/∂T and ∂µ/∂P . The parameter ∂µ/∂P trades off

non-negligibly with both µ0 and ∂µ/∂T (see Section 2.5.1). The direction of these trade-offs

helps us to rationalise the fact that a larger value of ∂µ/∂P was recovered in Richards et al.,

2020a compared to this study, given that they also found a larger µ0, and a more negative

∂µ/∂T . Furthermore, one would expect there to be discrepancy in the recovered viscoelasticity

parameters between Richards et al., 2020a and this study, due to the use of different seismic
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This study Richards et al. (2020a)

Model parameter i Posterior µi Posterior si xi ei

µ0 (GPa) 74.8 0.4 78.2 2.2
∂µ/∂T (GPaK−1) −0.0129 0.0005 -0.020 0.002
∂µ/∂P (unitless) 2.04 0.06 2.67 0.18
log10 ηr (Pa s) 23.2 0.7 22.6 1.6
EA (kJmol−1) 542 146 400 288
VA (cm3mol−1) 5.35 0.32 0.092 5.560
∂TS/∂z (K km−1) 1.63 0.14 0.919 0.257

log10 σ1 (unitless) −0.317 0.024 − −
log10 σ2 (unitless) 0.093 0.148 − −
log10 σ3 (unitless) 0.588 0.105 − −

Table 2.3: Comparison of recovered inversion parameters between this study and
Richards et al. (2020a). Posterior µi and si are estimates of the mean and standard deviation
of the posterior distribution for each parameter. The symbols xi and ei represent the estimate
of each parameter and its uncertainty, respectively, for the study Richards et al. (2020a), which
was conducted within a deterministic framework.

tomography models (SL2013sv, Schaeffer and Lebedev, 2013 and ANT-20, Lloyd et al., 2020,

respectively). Differences in ∂µ/∂P appear to be mostly caused by the different reference veloc-

ities adopted in the SL2013sv model used in Richards et al., 2020a, and the ANT-20 model used

here. Velocity increases more strongly with depth in the SL2013sv reference model, apparently

translating into a steeper sub-oceanic upper mantle velocity gradient in the final model and

thus a larger best-fitting ∂µ/∂P value of 2.67 ± 0.18. Interestingly, the value obtained in this

study, 2.04± 0.06, is nearer to experimentally determined estimates. This result may indicate

that the adopted reference model in ANT-20 is a more accurate representation of average upper

mantle VS structure. Alternatively, the improved agreement might reflect the fact that shear

wave velocities from ANT-20 are isotropic (Voigt average), whereas SL2013sv-derived counter-

parts represent the vertically polarised (VSV ) component only. Since the experimental ∂µ/∂P

constraints represent isotropic values, it is perhaps no surprise that Voigt average shear-wave

velocities give a more consistent result.
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2.5.1 Parameter Covariance Structure

To investigate how dependent a particular model parameter is on the choice of another, the pos-

terior sampling density is plotted for each parameter combination (Figure 2.6). This highlights

the presence of clear trade-offs, as expected given the need to adapt the proposal sampling

scheme to handle non-diagonal model covariance structure. It was found that the anelas-

ticity model m can be approximately separated into two independent components, A =

{µ0, ∂µ/∂T , ∂µ/∂P} and B = {ηr, EA, VA, ∂TS/∂z}, such that m = {A,B}. A reasonable

approximation for the model covariance structure therefore takes the form

ΣX ≈

⎡
⎢⎢⎢⎣
ΣA 0

0 ΣB

⎤
⎥⎥⎥⎦ . (2.58)

There exist strong parameter trade-offs within A andB separately, but only weak trade-offs

between A and B. This is in accordance with what what is expected physically, whereby A

regulates the elastic component of the physical response, and B the transient component.

Within A, a very strong negative trade-off between the reference shear modulus and its

temperature derivative is observed. This implies that with respect to the maximum a posteriori

estimate for this combination of parameters, a similar fit to the data can be obtained by co-

varying µ0 and ∂µ/∂T in opposite directions. It is possible to verify that this makes sense

in the context of the plate model VS(T ) relationship (Figure 2.3a), which serves as the main

data constraint on the inversion, as follows. The linear region of the VS(T ) relationship in a

given depth bin is well-approximated by assuming a purely elastic response at fixed pressure.

Consider the 50 to 75 km depth bin (Figure 2.3a, blue circles), and let us define a reference

shear modulus relevant to this depth slice as follows

µ∗
0 = µ0 +

∂µ

∂P
(P ∗ − P0) , (2.59)
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Figure 2.6: Posterior distributions of viscoelasticity parameters. Posterior sampling
density (ρsample, arbitrary units) of each combination of anelasticity models, highlighting phys-
ical trade-offs between parameters.
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where P ∗ = 2.1 GPa is the corresponding pressure value. The VS(T ) relationship can be

expressed as

VS(T ) =

√︄
MU(T )

ρ(T )
, (2.60)

and therefore, in terms of the renormalised shear modulus, it can be found that

VS(T ) =

√︄
µ∗
0 + ∂µ/∂T (T − T0)

ρ(T )
. (2.61)

Since density is only expected to vary by 2% over the temperature range covered by the 50 km to

75 km depth bin of the plate VS data, and even less so for the other two depth bins, its variation

is ignored for the sake of simplicity. Consider the numerator, ζ =
√︁
µ∗
0 + ∂µ/∂T (T − T0), of

Equation (2.61). This may be rewritten in the form

ζ√
µ∗
0

=

(︃
1 +

∂µ/∂T

µ∗
0

∆T

)︃ 1
2

, (2.62)

Assessing the magnitude of each term on the right hand side of this equation, |µ0| ∼ 102 GPa

and
⃓⃓
(∂µ/∂T )∆T

⃓⃓
∼ 101 GPa, it is possible to perform a binomial expansion since the ratio

⃓⃓
⃓⃓∂µ/∂T

µ∗
0

∆T

⃓⃓
⃓⃓ < 1. (2.63)

Therefore, expanding the square-root, it is found that

ζ =
√
µ0

(︃
1 +

1

2

∂µ/∂T

µ0

∆T +O((∆T )2)

)︃
. (2.64)

Ignoring terms of second-order and above, it can be deduced that the form of the linear rela-

tionship ζ(T ) looks like
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ζ ≈ √
µ0

(︃
1 +

1

2

∂µ/∂T

µ0

∆T

)︃
, (2.65)

and thus in terms of shear-wave velocity it is found that

VS(T ) =

√︃
µ0

ρ
+

1

2

∂µ/∂T

µ0ρ
∆T. (2.66)

Therefore, an increase in the reference shear modulus has the effect of increasing the VS value at

which the VS(T ) trend is initialised, as well as reducing the absolute gradient of the trend. The

temperature gradient of the shear modulus must assume a correspondingly more negative value

to compensate, in order to preserve the squared distance between data and model. A symmetric

argument can be used to interpret the positive trade-off between reference shear modulus and

its pressure gradient. The relative weakness of this
(︁
µ0, ∂µ/∂P

)︁
trade-off compared to that

of
(︁
µ0, ∂µ/∂T

)︁
may, in part, be down to the lower level of information that the geophysical

data contains on the variation of VS with depth. In addition, a negative trade-off between the

temperature and pressure derivatives of the shear modulus appears to be present.

By far the strongest parameter trade-off observed within the anelasticity model is contained

within B, between activation energy and reference viscosity; parameters controlling the onset

and strength of anelastic effects respectively. The non-linear relationship between parameters

in the anelastic regime prevents an analytical derivation of the trade-off between EA and ηr.

However, it appears that while the individual uncertainties on EA and ηr are very large, the

strength of trade-off between the two ensures only a small variation in the misfit between

data and model. Importantly, this relationship reduces the extent to which uncertainty in the

individual parameters propagates into uncertainty in upper mantle thermomechanical structure

(see Section 3.2). Trade-offs between other parameters within B appear to be present, although

relatively weak. In order to further constrain the model covariance, more data containing
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information about anelastic behaviour, especially at high pressure, are required.

2.6 Conclusions

A probabilistic approach to the calibration of experimental parameterisations of viscoelastic-

ity, including anelasticity, has been developed to provide a self-consistent mapping between

three-dimensional seismic tomographic velocity data and models of thermomechanical struc-

ture. By making use of a physical model based on laboratory data, and designed to account

for frequency dependence in the mantle stress-strain relationship, it is possible to translate

experimentally constrained microphysical behaviour into predictions of macroscopic variables

including temperature, viscosity and density, as a function of shear-wave velocity. The calibra-

tion procedure was performed using a suite of regional geophysical data constraints associated

with the geographical footprint of the chosen velocity model. An integral component of the

calibration procedure is its flexibility, allowing it to be deployed with any velocity model, and

any parameterisation of mantle viscoelasticity, as preferred. It can easily be adapted to work

with other data types, such as xenolith-derived constraints on upper mantle thermal struc-

ture. An implementation of the inverse theory is provided, using the Globally Adaptive Scaling

Within Adaptive Metropolis (GASWAM) adaptation of the Metropolis-Hastings algorithm to

allow ideal sampling efficiency, and thus make the inverse problem tractable. By probing the

model covariance structure, model parameter uncertainties and trade-offs can be evaluated in a

mathematically robust manner. This breakthrough enables mantle thermomechanical structure

and associated uncertainties to be inferred self-consistently from seismic tomography for the

first time.
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Chapter 3

Probabilistic Assessment of Antarctic

Thermomechanical Structure

3.1 Introduction

Antarctica is host to a volume of ice equivalent to 57.9±0.9 m of global mean sea level (GMSL)

rise, or roughly 90% of the global cryosphere (Bamber et al., 2018; Morlighem et al., 2020).

The mantle structure, topography, and glacial stability of this continent expresses a dichotomy

in tectonic setting between East and West Antarctica. The two regions are separated by the

Transantarctic Mountain Range, which spans the continental interior from the Weddell Sea to

the Ross Sea. As a result, Antarctica’s grounded ice volume is divided into an East and West

Antarctic Ice Sheet (EAIS and WAIS, respectively). The EAIS is underlain by thick, cratonic

lithosphere owing to minimal tectonic activity in this region since the Mesozoic Era (Noble et

al., 2020). The WAIS is underlain by a rift system primarily active between the late Cretaceous

and early Cenozoic, and in places still active today, which has given rise to upwelling of low

viscosity asthenosphere, and dynamically thinned lithosphere (Noble et al., 2020). Bedrock

elevation is predominantly above GMSL in the east, and below GMSL in the west (Figure
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3.1a). This exerts a major influence on ice dynamics, due to the increased vulnerability of

marine-grounded ice, especially when positioned on a reverse bed slope, as is the case in West

Antarctica (Fretwell et al., 2013). The WAIS is therefore considered much more prone to short-

term ice mass loss (Coulon et al., 2021). Indeed, it is declining by ∼ 200 Gt per year, while the

EAIS is approximately in equilibrium (within the error bounds of observational data, Shepherd

et al., 2018b).

Seismic shear-wave velocity (VS) can be used to gain insight into upper mantle structure

beneath the ice sheets due to its strong sensitivity to temperature (Faul and Jackson, 2005).

Laboratory experiments show sub-solidus temperature changes can induce up to 20% varia-

tions in VS (Priestley and McKenzie, 2013; and references therein). Although volatiles and

composition may also influence VS (Karato and Jung, 1998; Lee, 2003), recent studies show

close agreement between xenolith-derived temperature profiles and those inferred from seismic

tomographic velocity models using viscoelasticity parameterisations that ignore the potential

impact of compositional heterogeneity in the asthenosphere and lower lithosphere, indicating

that temperature is indeed the dominant control on shallow mantle VS variation (Hoggard et

al., 2020; Klöcking et al., 2020).

Until recently, Antarctica has suffered from a significant shortage of seismic data due in

part to difficulties operating polar seismic stations and the lack of proximal (latitudinally) land

masses (Lloyd et al., 2020). For example, global tomographic models such as SL2013sv have

relied on data from just 9 permanent seismic stations situated in Antarctica (Schaeffer and

Lebedev, 2013). However, ANT-20, a wave-equation traveltime adjoint tomographic velocity

model, has recently been developed utilising data from 270 earthquakes captured at 323 seismic

stations, the majority (297) of which reside on the Antarctic continent (Lloyd et al., 2020; see

Figure 3.1b for locations). Nearly all of the seismic stations used in ANT-20 were temporary

deployments for the purposes of distinct, regional studies. By integrating seismic data covering
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Figure 3.1: Geophysical and geochemical constraints on Antarctic mantle dynamics
and structure. (a) Antarctic bedrock elevation taken from BEDMAP2 data (Fretwell et
al., 2013), with elastically corrected GPS uplift rate overlain (Thomas et al., 2011, circles:
individual measurement sites; triangles: averages over local sites). Blue contours delineate
the transition between positive and negative bedrock elevation. Regions of negative elevation
around the periphery of the continent indicate where the AIS is marine-grounded. Text labels
indicate reference points within Antarctica and the surrounding ocean (AP: Antarctic Peninsula;
RnIS: Ronne Ice Shelf; WS: Weddell Sea; DML: Dronning Maud Land; GM: Gamburtsev
Mountain Range; WL: Wilkes Land; ASB: Aurora Subglacial Basin; RS: Ross Sea; RsIS:
Ross Ice Shelf; MBL: Marie Byrd Land; TAM: Transantarctic Mountain Range; AS: Amundsen
Sea; EL: Ellsworth Land; BS: Bellingshausen Sea). (b) VS at 150 km depth from ANT-20
tomographic model (Lloyd et al., 2020), with mid-ocean ridge (MOR) potential temperature
overlain (Dalton et al., 2014, circles). Locations of broadband seismic stations south of −45◦

latitude used in ANT-20 shown by grey triangles (temporary stations), and pale grey squares
(permanent stations).
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a broad range of azimuths from such studies, and combining with that available from a handful

of permanent stations, good data coverage could be achieved across the continent (see Figure 9

of Lloyd et al., 2020). As a result, ANT-20 is the first continental model to image Antarctica at

regional-scale resolution (∼ 100 km), and thus serves as a suitable starting point for mapping

temperature and viscosity with unprecedented fidelity. Promisingly, this tomographic model

contains many features that are consistent with independent constraints. For example, lateral

variations in VS beneath the Antarctic mid-ocean ridge system correlate well with point esti-

mates of potential temperature (Dalton et al., 2014; Figure 3.1b). Fast shear-wave velocities

below East Antarctica are indicative of high viscosity lithosphere and slow velocities in the

West point to low viscosities and thus short viscoelastic response timescales (Coulon et al.,

2021).

Here the novel Bayesian inverse framework presented in Chapter 2 is applied for self-

consistent quantification of upper mantle thermomechanical structure from seismic data via the

calibration of experimental parameterisations of viscoelasticity (including anelasticity). Seis-

mologically derived estimates of viscosity, temperature, LAB depth and GHF are presented.

For the first time, uncertainties in each of these outputs are constrained using stochastic meth-

ods. Finally, the physical outputs presented herein are evaluated in the context of other studies,

and potential implications and remaining challenges are discussed. The principal goal of this

chapter is to show how disparate geophysical constraints can be integrated within a proba-

bilistic inverse framework to develop a quantitative understanding of Antarctic upper mantle

thermomechanical structure and its associated uncertainties.
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3.2 Predictions of Thermomechanical Structure Beneath

Antarctica

Given a depth slice of ANT-20, it is possible to convert each VS(θ, φ) value – where θ and φ

represent latitude and longitude, respectively – into an estimate of thermomechanical state (vis-

cosity, η, temperature, T , and density, ρ) by assuming a choice of viscoelasticity model X i. To

assess the improvement achieved by using the inversion procedure to refine this choice of model,

a series of three mean and standard deviation viscosity structures are generated, each calculated

based on the 150 km depth slice of ANT-20. In each case, NU viscoelasticity models are selected,

and their predictions summarised by substituting log10η into equations (2.56) and (2.57). This

results in a geometric mean and standard deviation of the viscosity at each location. In case I,

each parameter is sampled independently from the prior distribution (Table 2.1). This repre-

sents, conservatively, the quality of Antarctic viscosity prediction that can be made based purely

on experimental data pertaining to the mechanical behaviour of the upper mantle. In case II,

each parameter is sampled independently from the posterior distribution (Table 2.1). This

represents the quality of prediction it is possible to make having calibrated the viscoelasticity

parameters with independent geophysical data, but ignoring any information on the covari-

ance between parameters. Finally, in case III, the optimal approach laid out in Section 2.4 is

taken, using a uniform random sample of posterior viscoelasticity models from the full set of

NS = 200, 000 post burn-in models. This represents the best constraint on viscosity structure,

including not only the refinement of individual parameters based on the data, but also infor-

mation that the data provides about the model covariance structure. The use of a subset of

the post burn-in models ensures computational viability. A suitable value for the sieving ratio

NU/NS, representing the proportion of total post burn-in models used at the prediction stage,

was found by investigating the additional information obtained by increasing NU in integer
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Figure 3.2: Determining the number of models required to accurately characterise
posterior expectation and variance. Stability of the expectation value µ, and the uncer-
tainty σ, of predicted viscosity at an arbitrary location (z = 150 km, latitude θ = −90.00◦,
longitude φ = 0.00◦) of the ANT-20 VS model, as a function of the number of randomly selected
posterior viscoelasticity models used to construct them, denoted by NU . Calculated by looking
at the discrepancy in a physical prediction, X, before and after introducing an extra model,
(X̂(n+ 1)− X̂(n))/X̂(n+ 1). (a) X = µ. (b) X = σ.

steps, starting at 1 (Figure 3.2). It was ascertained that NU as small as 100 was sufficient to

bring deviations in the mean and standard deviation viscosity structure down to a fraction of

a percentage upon the addition of an extra viscoelasticity model, and therefore a safe choice of

NU = 1, 000 was taken.

A large reduction in uncertainty (4 to 5 orders of magnitude) is observed from case I-III

(Figure 3.3), highlighting the benefit of the inversion as a whole. The most dramatic improve-

ment occurs between case II and III, due to the effect of the highly non-diagonal covariance

structure, which, due to compensation, results in muted variation in physical predictions for

posterior models that encompass wide parameter ranges. Constraining the covariance structure

of the physical model used to convert between shear-wave velocity and thermomechanical pa-

rameters is therefore central to the quality of the result obtained. As a result, complementary

data sets such as those used to calibrate the inversion here are hugely important. It can be

concluded from this assessment that the statistical inverse framework, as utilised optimally in

Case III, provides the basis for improved predictions of thermomechanical structure. Therefore,

this approach is taken to calculate a range of physical outputs in the results that follow.
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Figure 3.3: Diffusion creep viscosity and uncertainty based on forward and inverse
modelling. Geometric mean (left-hand column; panels a, c, e) and standard deviation (right-
hand column; panels b, d, f) viscosity structure at 150 km, calculated using three different
methods. First (top row; panels a, b), by sampling viscoelasticity parameters independently
from the prior distribution (see Table 2.1). Secondly (middle row; panels c, d), by sampling
viscoelasticity parameters independently from the posterior distribution. Finally (bottom row;
panels e, f), by sampling sets of viscoelasticity parameters from the posterior output. In each
case, NU = 1, 000 models are used to generate the ensemble of viscosity predictions. White
contours denote regions in which mean viscosity µη > 1022.5 Pa s.
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3.2.1 Viscosity Structure

The diffusion creep viscosity structure derived from the application of the thermodynamic

conversion method to the ANT-20 VS model contains significant lateral heterogeneity beneath

the Antarctic continent and surrounding oceans. This is to be expected given the presence

of shear-wave velocity anomalies up to 8% in relative amplitude observed in the underlying

tomographic velocity (see Figure 11 in Lloyd et al., 2020). To show how this behaviour manifests

itself in terms of viscosity variation, geometric mean and standard deviation viscosity structures

are calculated as a function of depth (Figures 3.4 and 3.5). Note that at low homologous

temperatures, the anelastic contribution to VS variation is negligible, meaning that viscosities

cannot be reliably constrained when η > 1022.5 Pa s (white contours in Figures 3.4 and 3.5).

However, this is an issue of minor significance, since regions with viscosities above this threshold

have Maxwell relaxation times exceeding 20 kyr and will behave elastically over the timescales

relevant to GIA modelling. In the viscosity structure analysis that follows, the asthenosphere

is assumed to be the region in which η < 1022.5 Pa s.

At 150 km depth, the thermomechanical dichotomy between East and West Antarctica

is most obvious; a sharp viscosity boundary follows the path of the Transantarctic Mountain

Range (TAM) across the continent from the Ross to the Weddell Sea. The mantle at this depth

is lithospheric beneath much of the EAIS, and asthenospheric beneath the WAIS. Within West

Antarctica itself, viscosity varies within the range 1019−23 Pa s, and it is possible to identify

two long-wavelength low-viscosity anomalies. The first arises at the Macquarie Triple Junction,

extends to the Balleny Islands, and follows the TAM as it passes into West Antarctica through

the western side of the Ross Embayment. The second passes from Marie Byrd Land, through

the Amundsen Sea Embayment, to the Antarctic Peninsula. Both anomalies contain viscosities

as low as η ∼ 1019 Pa s, and are also identifiable at 75 km, where they form a connected region

which is the only portion of asthenosphere within the continental footprint at this depth.
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Figure 3.4: Diffusion creep viscosity beneath Antarctica. Geometric mean viscosity
structure at 75 km, 150 km, 250 km and 350 km depth (a, b, c and d, respectively). Each
structure is calculated by utilising a uniform random sample of NU = 1, 000 posterior viscoelas-
ticity models to convert ANT-20 shear-wave velocities into viscosity, and averaging the resulting
ensemble.

73



Figure 3.5: Uncertainty in diffusion creep viscosity beneath Antarctica. Geometric
standard deviation viscosity structure at 75 km, 150 km, 250 km and 350 km depth (a, b,
c and d, respectively). Each structure is calculated by utilising a uniform random sample
of NU = 1, 000 posterior viscoelasticity models to convert ANT-20 shear-wave velocities into
viscosity, and determining the variance of the resulting ensemble.
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Model-based uncertainty in asthenospheric viscosity is very low (∼ 0.3 orders of magnitude)

at 75 km and 150 km depth, and appears mostly homogeneous, albeit increasing appreciably

within localised regions of very high viscosity. Given the small size of these regions (e.g., the

higher viscosity patch beneath the Siple Coast at 150 km depth), it is difficult to rule out the

possibility that they result from tomographic artefacts.

At deeper depths (250 km and 350 km), average asthenospheric viscosities within the con-

tinent are higher (η = 1020.5±0.5 Pa s and η = 1021.4±0.6 Pa s, in terms of median and median

absolute deviation, respectively) and the area of lithospheric coverage is reduced, leading to an

overall more homogeneous structure. The low-viscosity anomaly observed at shallow depths

beneath the Antarctic Peninsula has evolved into a high-viscosity anomaly that extends to-

wards the South Scotia ridge by a depth of 350 km, possibly representing a fossil slab (An

et al., 2015). Low viscosity regions present beneath the Ross and Amundsen Sea Embayments

at 150 km persist at these depths, although the high viscosities that separate the two regions

at shallower depths appear muted or absent. In addition, a large low viscosity anomaly can be

seen in the Southern Ocean in the vicinity of Marie Byrd Land, consistent with the presence of

a mantle plume (Seroussi et al., 2017). Average asthenospheric viscosity uncertainty increases

with depth, likely reflecting the lack of deep geophysical data used to constrain the inversion

for material properties. In particular, the inversion procedure is unable to constrain activation

volume beyond an individual parameter precision of approximately 10%. Since this parame-

ter governs the pressure-dependence of viscosity, deep viscosity uncertainty is highly correlated

with activation volume uncertainty. However, lateral variations in uncertainty structure remain

minimal, and even at 350 km depth do not exceed an order of magnitude.

75



Figure 3.6: LAB depth variations beneath Antarctica. Mean (a) and standard deviation
(b) LAB depth derived from ANT-20, as estimated from depth to the 1200 ◦C isotherm. ANT-
20-derived LAB structure is compared to the predictions of Richards et al., 2020a (c) and
Priestley et al., 2018 (d), derived from the SL2013sv and CAM2016 seismic tomographic
velocity models, respectively. The LAB depth models are overlain with the minimum age since
last continental magmatic activity; the relationship between these two variables is shown for
ANT-20 in (e). Histogram (f) displays the distribution of possible Spearman’s Rank correlation
coefficient values, ρ, between LAB depth and age for each LAB structure (CAM2016 - red,
ANT-20 - green, SL2013sv - blue). Black dashed line = minimum value of ρ required for there
to be a statistically significant increase in LAB depth with age at the 95% confidence level.
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Figure 3.7: Antarctic LAB depth dichotomy. (a) Drainage network divides developed by
the Goddard Ice Altimetry Group from ICESat data (Zwally et al., 2012). (b) Distribution of
LAB depths beneath WAIS and EAIS (yellow and blue, respectively).

3.2.2 Lithosphere-Asthenosphere Boundary Depth

The framework used to construct self-consistent predictions of thermomechanical structure be-

neath Antarctica can also be utilised to constrain other parameters important for GIA and

ice sheet modelling studies. First, the ensemble of three-dimensional temperature structures

is used to infer LAB depth. For each temperature structure associated with a given choice

of viscoelasticity model in the ensemble, the laterally varying geothermal profiles are interpo-

lated to a 1 km depth interval. Prior to interpolation, anomalous temperatures associated with

downward bleeding of crustal velocities in the underlying tomographic velocity are removed

by identifying spurious reversals of the geothermal gradient and excising temperatures above

these loci. In all cases, a temperature of 0 ◦C is enforced at the basement depth, which can be

estimated using the Moho depth and crustal thickness grids associated with the tomographic

velocity. Following interpolation, the depth at which the resulting profile intersects a tem-

perature of 1200 ◦C is extracted, which serves as a proxy for LAB depth (Figure S6, Burgos

et al., 2014; Richards et al., 2018). By summarising the set of ensemble predictions of laterally
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Figure 3.8: Comparison of LAB depth variations to contemporary studies. LAB depth
estimates from this study (mean a posteriori model), Richards et al. (2020a) and Pappa et al.
(2019) (panels a, b, and c respectively). LAB depth uncertainty estimate from this study (panel
d). Difference in estimated LAB depth between this study and the studies of Richards et al.
(2020a) and Pappa et al. (2019) (panels e, and f respectively).

varying LAB depth, according to equations (2.56) and (2.57), a mean and standard deviation

LAB depth structure is arrived at (Figure 3.6).

The resulting mean LAB depth displays a number of interesting features. Good agreement

is found with long-wavelength structure observed elsewhere in the literature (Priestley et al.,

2018; Richards et al., 2020a), whereby LAB depth exceeds 150 km beneath the EAIS, and is

much lower beneath the WAIS. Spatially averaged LAB depths of 233± 41 km and 63± 13 km

are found beneath the respective ice sheets, calculated according to the median and median

absolute deviation. The overall strength of this heterogeneity is high, involving LAB depths

as shallow as 35 km in the West, and as deep as 365 km in the East. A comparison of the

LAB depth derived in this study to that of Richards et al. (2020a), as well as Pappa et al.

(2019), is shown in Figure 3.8. The work of Richards et al. (2020a) is based on a global
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calibration of YT16 viscoelasticity parameters, using the tomography model SL2013sv, and a

deterministic inversion procedure. The work of Pappa et al. (2019) is based on a combination

of satellite gravity data with seismological and petrological modelling. All structures exhibit a

clear dichotomy in LAB depth between West and East Antarctica. The largest dichotomy is

exhibited in this study’s LAB depth estimate, with a range of 35 to 365 km, while the most

muted dichotomy is exhibited in the estimate of Pappa et al. (2019), with a range of 70 to

260 km. The average discrepancy between this study’s LAB depth estimate and that of the

other studies is less than 10 km in each case, and there is reasonable agreement between the

studies in West Antarctica. In this region, the model developed in this study is on average

11 ± 7 km shallower than that of Richards et al. (2020a), and 32 ± 8 km shallower than that

of Pappa et al. (2019). However, beneath East Antarctica, the discrepancies grow much larger.

Here, the model presented in this study is on average 19± 22 km deeper than that of Richards

et al. (2020a), and 40 ± 25 km deeper than that of Pappa et al. (2019). The full distribution

of LAB depths represented by East and West Antarctica are shown in Figure 3.7, along with

the classification used to distinguish between the two continental components, which is based

on the satellite-mapped drainage network (Zwally et al., 2012).

The maximum ∼ 15 km depth resolution and ∼ 100 km lateral resolution of the underlying

tomographic velocity is the dominant source of uncertainty on the calculated LAB structure

over much of Antarctica, as a result of the low variance in LAB depth predictions provided by

the ensemble of viscoelasticity models. However, this is not the case in certain areas of East

Antarctica, where very large inferred LAB depths are also associated with large uncertainties,

of order 30 to 40 km. The statistical uncertainty associated with the ensemble of viscoelasticity

models is expected to rise with increasing LAB depth due to elevated temperature uncertainty

with depth arising from the previously discussed uncertainty in activation volume.

By comparing the predictions of LAB depth derived from this study to geological con-
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straints not linked to the viscoelasticity calibration procedure, it is possible to verify that the

temperature structures arrived at via the inversion method are realistic. The location and

timing of Cenozoic magmatism was analysed using a compilation of geochemical analyses on

volcanic material (Ball et al., 2021; DIGIS Team, 2021). The data were spatially binned over

a length scale of 100 km, in accordance with the seismological resolution, with minimum time

since last eruption and its associated uncertainty extracted. The data were further processed

to remove points with age uncertainties exceeding 10 Ma and the resulting data set mapped

(Figure 3.6). Two key observations are immediately apparent when comparing magmatism

and LAB depth. First, all sites containing a record of Pliocene or Quaternary (i.e., 5.33 Ma

to present) eruptions lie above ANT-20 derived LAB depths in the range 35 to 70 km; the

shallowest continental depths predicted by the present day seismic structure. This result is

consistent with geodynamic expectations, since for a reasonable range of mantle temperature

and hydration conditions, significant decompression melting is only expected in regions with

LAB depth shallower than 80 km (Ball et al., 2021). Secondly, the minimum age since last

eruption falls within the Miocene epoch for the remaining site, and here, LAB depth exceeds

70 km. The lack of more recent magmatism in this region indicates that the source of such

magmatism has been removed over geological timescales. If this is the case, the LAB would

have recovered to an equilibrium depth more representative of mean mantle conditions, thus

further validating the model predictions of this study.

To validate this hypothesis, models of conductive cooling were used to determine the ex-

pected increase in LAB depth as a function of geological time. The thermal modelling ap-

proach of Richards et al. (2020b) was adapted, imposing an initial temperature condition that

assumes a steady-state geotherm has been established by the time active magmatism ceases.

To model lithospheric rethickening following periods of active magmatism, the one-dimensional
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heat equation is solved, which can be expressed as

ρ(P, T,X)CP (T,X)
∂T

∂t
=

∂
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]︃
+H∗(X), (3.1)

where t is time, z is depth, T is temperature, P is pressure, X is composition, ρ is density,

CP is the isobaric specific heat capacity, k is the thermal conductivity, and H∗ is the internal

radiogenic heat production.

This equation is solved numerically with an unconditionally stable time- and space-centered

Crank-Nicholson finite difference scheme and a predictor-corrector step (Press et al., 2007).

Accordingly, Equation 3.1 is recast as

T n+1
j + A

⎛
⎝−

km
j+ 1

2

∆zmj
T n+1
j+1 +

(︄
km
j+ 1

2

∆zmj
+

km
j− 1

2

∆zmj−1

)︄
T n+1
j −

km
j− 1

2

∆zmj−1

T n+1
j−1

⎞
⎠ (3.2)

= T n
j + A

⎛
⎝
km
j+ 1

2

∆zmj
T n
j+1 −

(︄
km
j+ 1

2

∆zmj
+

km
j− 1

2

∆zmj−1

)︄
T n
j +

km
j− 1

2

∆zmj−1

T n
j−1

⎞
⎠+ AH∗

(︂
∆zmj +∆zmj−1

)︂
,

where

A =
∆t(︃

ρmj C
m

P j

(︂
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)︂)︃ , (3.3)

∆t is the time step, ∆z is the depth spacing between nodes, and n and j are the time and depth

indices, respectively. Equation 3.2 is solved by tridiagonal elimination (Press et al., 2007). For

the initial predictor phase of each time step, m = n, whilst in the subsequent corrector phase,

m = n + 1
2
. A Lagrangian reference frame is used, whereby ∆zmj is initially set to 1 km (i.e.,

when m = 0), then scales with thermal contraction in subsequent time steps. The time step,
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∆t, is calculated using a Courant-Friedrichs-Lewy condition according to

∆t = minj

⎡
⎢⎢⎣

(︂
∆z0j

)︂2
ρ0jC

0
P j

2.2k0j

⎤
⎥⎥⎦ ∼ 5 kyr. (3.4)

Convergence of T n+1 to within a tolerance of 0.001◦C is typically achieved after the corrector

phase.

The two-layer models employed in this study include a continental crust of thickness,

Tc = 10–40 km, and an underlying mantle extending from the Moho to the assumed equilibrium

plate thickness, zp = 250 km. Separate parameterisations are used to define the thermophysical

properties of each layer (k, CP , ρ, and H∗). In the mantle, the temperature- and pressure-

dependent formulations specified in Richards et al. (2020b) are adopted, with radiogenic heat

production assumed to be negligible (H∗ ∼ 0 mW m−3). In the crustal layer, radiative thermal

conductivity and density are determined using the Richards et al. (2020b) parameterisation for

oceanic crust, but with reference density, ρ0, reduced from 2950 kg m−3 to 2700 kg m−3, a value

more compatible with a continental setting. By contrast, continental crustal heat capacity and

lattice thermal diffusivity, κlat, are calculated using the parameterisation of Whittington et al.

(2009), while radiogenic heat production is assumed to be 0.7 mW m−3 (Hoggard et al., 2020).

Initial temperature profiles are obtained by combining these parameterisations with the

equations of McKenzie et al. (2005) to calculate steady-state temperature profiles for specified

values of potential temperature (TP = 1358–1507◦C), crustal thickness (Tc = 10–40 km), and

initial LAB depth (z0LAB = 35–65 km). The aforementioned ranges are based on seismically

inferred values beneath the Antarctic magmatic provinces. In all cases kinematic viscosity, ν,

is assumed to be 9 × 1019 Pa s. For each combination of Tc and TP , the steady-state geotherm

consistent with a given initial LAB depth value was found by iterating through a range of

mechanical boundary layer (MBL) thicknesses (2–60 km), and selecting the temperature profile
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with depth to the 1200◦C isotherm equal to z0LAB.

To simulate the waning of a plume-derived heat source through time, an evolving basal

boundary condition is imposed. At t = 0, temperature is set to be constant and equal to

the values of the relevant input geotherm at depths greater than the base of the thermal

boundary layer (i.e., the shallowest depth at which the geothermal gradient, ∂T
∂z
, drops below

0.5◦C km−1). In later time steps, the depth node at which this boundary condition is imposed

increases according to a prescribed plume sinking rate, vplume = 1 mm yr−1, until the deepest

node is reached, whereupon the basal boundary depth remains fixed. At the same time, from

t = 0–15 Myr, the temperature applied at the basal boundary decays linearly back towards

equivalent values for an ambient mantle adiabat (TP = 1333◦C). This 15 Myr timescale was

determined from VS-derived estimates of Antarctic potential temperature change as a function

of age since last eruption. Beyond t = 15 Myr, the basal temperature is assumed to remain

equal to that of the ambient mantle adiabat at the appropriate depth.

By tracing the depth of the 1200◦C isotherm throughout the model runs, predicted conduc-

tive rethickening can be directly compared with the magmatic age-dependent LAB depth trends

observed across Antarctica (Figure 3.6e). This depth evolution accounts for contraction and

subsidence of the lithosphere through time following the isostatic formulation given in Richards

et al. (2020b). In order to compare the output of the conductive cooling models to the data,

spatially binned eruption age values are tied to a prediction of LAB depth and its uncertainty,

calculated by taking the average and standard deviation of the depths within each bin (Figure

3.6e). The magmatic data are fully consistent with the post-magmatic lithospheric thickening

models, suggesting that the seismically inferred LAB values are reliable.

To further investigate whether the data implies the existence of a monotonic relationship

between LAB depth and minimum age since last eruption, a statistical test was applied. A

Monte Carlo approach was employed to simulate the distribution of possible trends according
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to the uncertainty reported on each LAB depth-age data point, as follows. For each data point,

di, initially located at di = (ai, zi) in age-depth space, a random perturbation, ∆i = (αi, ζi), is

added by drawing from a normal distribution with diagonal covariance scaled by the location-

dependent age and depth uncertainties. The resulting trend represents one possible combination

of “true” age-depth values, and a corresponding Spearman’s Rank correlation coefficient is

calculated for this trend. This process is repeated until convergence, resulting in a distribution

of possible correlation coefficients for each LAB depth model (Figure 3.6f). For us to associate a

given coefficient with statistically significant evidence for the existence of a positive monotonic

relationship between LAB depth and minimum age since last eruption at the 95% confidence

level, it must exceed a value of ρ = 0.296.

It was found that the ANT-20 and SL2013sv derived LAB models satisfied this statistical

test to at least the 1σ level, with coefficients ρ = 0.17± 0.16 and ρ = 0.38± 0.14 respectively.

This result suggests that both models make reliable LAB depth predictions in the context of

the geological record. It is unlikely however that the improved correlation offered by SL2013sv

necessarily translates into this being a more realistic LAB model than ANT-20. This is because

while, in each case, the spatial binning procedure was conducted over a 100 km radius, the true

lateral resolution of SL2013sv is much poorer than ANT-20 over Antarctica. The resulting

LAB model is therefore laterally smoother, reducing spatially binned LAB depth uncertainties

and potentially improving the average trend observed in the age-depth data. It is unlikely that

the LAB model derived from CAM2016 satisfies the test for statistical significance, owing to

a coefficient, ρ = −0.23 ± 0.19, such that less than 1% of possible age-depth trends contain a

statistically significant positive gradient. This result may indicate that the LAB depth predic-

tions of CAM2016 are less reliable in the Antarctic region than its counterparts. Nevertheless,

there are several limitations on this analysis imposed by the small size of the magmatic dataset,

significant clustering of data points within age-depth space, and large age uncertainties on cer-
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tain data points. These have a non-negligible impact on the calculated correlation coefficients,

and so this analysis does not provide conclusive evidence for the reliability, or lack thereof, of

any given seismologically derived LAB depth model.

3.2.3 Geothermal Heat Flow

In addition to calculating LAB depth, it is possible to constrain continental geothermal heat

flow by fitting a steady-state, laterally varying geotherm to the ensemble of three-dimensional

temperature structures following the procedure laid out in McKenzie et al. (2005). At shallow

depths, the downward bleeding of crustal velocities results in anomalously high temperatures,

which must be excised from the data prior to fitting. This was achieved by applying two

criteria. The first was to remove data points shallower than the Moho depth. The second

was to remove any portion of the raw geothermal profile directly beneath the Moho where the

temperature gradient is negative (∂T/∂z < 0). An additional constraint that the temperature

reaches 0 ◦C at the basement depth was added to the data. The resulting temperature profile

was interpolated on a 1 km interval. LAB depth was calculated by finding the depth at which

the interpolated geothermal profile first reaches 1200 ◦C (Figure 3.9).

Initially, a constant value for the mantle potential temperature (TP = 1333 ◦C) was used

in the geothermal profile fitting procedure at each location, consistent with the geochemically

constrained global average (Richards et al., 2018). This enabled an estimate of the empirical

linear fit between LAB depth (as defined by the depth to the 1200 ◦C isotherm) and thermal

boundary layer depth to be calculated, according to

zTBL = a× zLAB + b. (3.5)

The fitting parameters were determined using orthogonal distance regression to be a = 1.839±

0.001, and b = −16.5 ± 0.2 km. Then, a spatially variable mantle potential temperature was
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Figure 3.9: Processing and fitting geothermal profiles. Raw (circles) and fitted (red line)
temperature structure shown for two different locations (a: latitude θ = −79.0◦, longitude
φ = 15.0◦; b: latitude θ = −80.0◦, longitude φ = 50.0◦). Gray circles are raw data removed
prior to interpolation and fitting, based on Moho depth and temperature gradient criteria. Moho
depth taken from ANT-20 (Lloyd et al., 2020), LAB depth calculated based on intersection
between interpolated geothermal profile and 1200◦ isotherm. Thermal boundary layer (TBL)
depth estimated based on an empirical scaling from LAB depth.
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calculated by averaging the interpolated geothermal structure between the empirically fitted

thermal boundary layer depth and 400 km. Finally, the geothermal profile fitting procedure

was repeated using the spatially variable mantle potential temperature. Geothermal heat flow

was calculated by multiplying the crustal conductivity by the temperature gradient at base-

ment depth. In constructing a modelled geothermal profile at a given location, it is necessary

to account for lateral variations in crustal thickness, as well as depth variations in radiogenic

heat production and conductivity. As previously, the crustal thickness grid associated with the

tomographic velocity model was used, to ensure self-consistency. For crustal heat production,

a value of H∗
ocean = 0.0 µW m−3 is assumed within the ocean, distributed uniformly throughout

the crustal layer. Within the continent, the crust is divided into two layers of equal depth.

Values of H∗
cont = 1.0 µW m−3 and H∗

cont = 0.3 µW m−3 are assumed in the upper and lower

crustal layers, respectively. This two-layer continental heat production parameterisation is

compatible with globally averaged values obtained from the comprehensive crustal geochemical

analysis of Sammon et al. (2022), and is preferred for two main reasons. Firstly, the simplic-

ity of the parameterisation avoids assuming more detailed knowledge of the three-dimensional

distribution of heat producing elements within the crust than is currently available. Secondly,

it reduces the sensitivity of the crustal radiogenic heat content to regions of anomalously thick

crust, as compared to assuming a single crustal layer of constant heat production (although

this sensitivity remains non-negligible). Mantle and oceanic crust conductivity are calculated

according to the temperature- and pressure-dependent parameterisation of Korenaga and Ko-

renaga (2016). In the continent, crustal conductivity is set to a constant value of kcrust = 2.5 W

m−1 K−1. These assumptions simplify the true lateral and depth dependence of heat produc-

tion and conductivity within the continental crust, which are expected to vary within the range

H∗
cont ∼ {0.0, 3.0} µW m−3 and kcrust ∼ {1.0, 4.0} W m−1 K−1 (Jennings et al., 2019). Inves-

tigating the effect of the variation of these two parameters on the resulting heat flow is not
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the focus of this chapter, but is discussed in detail in Chapter 4. However, a close fit between

theoretically and VS-derived geothermal profiles calculated using these simple parameter as-

sumptions suggests the first-order control on GHF estimates is the seismically inferred thermal

structure rather than the chosen crustal parameterisation. With this in mind, a laterally vary-

ing mantle potential temperature is used during the fitting process, estimated according to the

average VS-derived temperature beneath the base of thermal boundary layer.

Resulting estimates of spatially averaged continental energy transfer rates are 44±2 mWm−2

into the base of the EAIS, and 76±7 mWm−2 into the base of the WAIS, where the ‘uncertainty’

in this case relates purely to lateral variations in mean heat flow (Figure 3.10). Both sides of

the continent contain GHF variations in excess of 40 mW m−2. However, East Antarctica is less

heterogeneous, with over 75% of its area characterised by GHF in the region 40 to 50 mW m−2.

By contrast, the WAIS is underlain by bedrock feeding it anywhere from approximately 50

to 100 mW m−2 of geothermal energy, with heat flow unevenly distributed across the region.

The connection of two long-wavelength (exceeding 10, 000 km) thermal anomalies into a single

anomaly, observed in the viscosity structure at 75 km depth (Figure 3.4a), can also be seen

here to stretch from the Ross Sea through Marie Byrd Land and up to the Antarctic Peninsula,

before stretching offshore towards the South Scotia ridge. Most of this anomaly is located

within West Antarctica, with the exception of its eastern edge within Marie Byrd Land and

Victoria Land. The presence of this anomaly, combined with shorter-wavelength (∼ 1,000–

10,000 km) cold anomalies observed in Marie Byrd Land and Ellsworth Land, together make

up a highly heterogeneous West Antarctic GHF structure.

3.3 Discussion

In the text to follow, it is shown how the results presented in this study build upon existing

evidence of strong lateral heterogeneity in Earth’s internal thermomechanical structure beneath
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Figure 3.10: GHF variations across Antarctica. Mean (a) and standard deviation (b) GHF
derived from ANT-20. Estimated by fitting steady-state geotherms to temperatures inferred
from an ensemble of viscoelasticity models. Distribution of GHF into base of West Antarctic
and East Antarctic Ice Sheets (c; yellow and blue, respectively). Zoom-in of distributions (d).
Regional separation calculated according to the pattern of Antarctic drainage systems, see
Figure 3.7. Thick dashed lines show the median of each distribution. Thin dashed lines are
located one median absolute deviation away from the median of each distribution.
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Antarctica, leading to spatially variable LAB depth and GHF. First, the dichotomy between

West and East Antarctic thermomechanical structure is discussed, along with implications for

ice sheet stability. Secondly, GHF predictions are compared to those of a recent study by Shen

et al. (2020). Thirdly, it is discussed how a consideration of physical forcing timescale can

be used to reconcile observations and model predictions of mantle viscosity. Finally, the most

significant sources of remaining uncertainty in quantifying mantle structure are summarised.

3.3.1 West and East Antarctic Mantle Structure

Evidence is found that steady-state diffusion creep viscosities reach a lower threshold of η ∼

1019 Pa s throughout the shallow mantle (150 to 350 km) beneath West Antarctica. Uncertainty

in asthenospheric viscosity structure is found to be within one order of magnitude across the

full depth range 0 to 400 km of study, and increases with depth. Low-viscosity anomalies

observed within the mantle viscosity structure correspond with spatial patterns in LAB depth

and GHF structure, whereby negative and positive anomalies are observed, respectively, which

is to be expected given the self-consistent framework within which each of these parameters is

estimated. For example, viscosities of 1019.5±0.3 Pa s present at 150 km depth in western Marie

Byrd Land towards the Amundsen Sea Embayment are associated with thin LAB depths (30 to

50 km) and elevated GHF (85 to 95 mW m−2), where quoted ranges represent spatial variability

within this region. The inference that such low viscosities beneath the WAIS are caused by a

thermal anomaly is consistent with the geological record of Cenozoic magmatism (Ball et al.,

2021; DIGIS Team, 2021). The combination of high GHF, thin lithosphere and low viscosity

points to a highly dynamic ice sheet–solid Earth interaction in regions including western Marie

Byrd Land, the eastern Ross Embayment, and the Antarctic Peninsula. Large fluxes of thermal

energy into the base of the ice sheet in these regions will likely enhance basal melting, reducing

friction and increasing glacial sliding rates (Burton-Johnson et al., 2020; Shen et al., 2020). On
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the other hand, a thin lithosphere and low viscosity asthenosphere encourage rapid bedrock

uplift and may help to stabilise and reduce grounding line retreat (Gomez et al., 2010).

Much higher viscosities are inferred beneath East Antarctica, with much of this side of the

continent exhibiting LAB depths in excess of 150 km. LAB depth is on average 63 ± 13 km

beneath West Antarctica, significantly lower than the 233 ± 41 km estimated beneath East

Antarctica. The combination of thick lithosphere and moderate GHF suggest a less dynamic

interaction between the ice sheet and the solid Earth. While there is evidence for a low viscosity

anomaly of order 1019.5±0.7 Pa s at a depth of 350 km in Wilkes Land, beneath the Aurora

Subglacial Basin, it does not penetrate up to shallower depths of 150 km, and therefore the

influence of this anomaly on GIA rates is expected to be greatly reduced compared with the

shallow anomalies beneath much of the WAIS. Nonetheless, this region is associated with GHF

of 45 to 60 mW m−2. The upper end of this range is among the highest heat flow values

estimated across East Antarctica (with the exception of the eastern Ross Embayment). Ice

velocity and mass discharge rates across Wilkes Land are accelerating in response to warming

temperatures in the Southern Ocean (Noble et al., 2020). The marine-based Aurora Subglacial

Basin is positioned on a reverse bed slope, and may be susceptible to rapid ice mass loss (Shen et

al., 2018a). Elevated GHF could therefore enhance this topographic instability by encouraging

ice flow across the grounding line.

3.3.2 Comparing Predictions of Geothermal Heat Flow

Estimates of GHF exhibit similar spatial structure to that estimated by Shen et al. (2020), albeit

with less short-wavelength variation. The study conducted by Shen et al. (2020) calibrated an

empirical mapping between GHF and VS using the observed relationship across the continental

United States between interpolated heat flow measurements and VS at 80 km depth from a

regional tomographic model. When the US-calibrated mapping is applied to their Antarctic
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velocity model, resulting GHF ranges from 40 to 90 mW m−2. The results of this study agree

on the presence of anomalously high heat flow (approximately 80 mW m−2) stretching from

the Ross Sea to the Antarctic Peninsula, avoiding the coast between the Ross and Amundsen

Sea. The most obvious discrepancy between the two structures is the presence of a high heat

flow anomaly in this study, situated within the footprint of the Gamburtsev Mountain Range.

The amplitude of this anomaly is 15% above the East Antarctic average. The reliability of this

particular prediction should be doubted, because while the geological origin of the Gamburtsev

Mountains is not well known, if it were caused by a mantle plume this would imply thin

lithosphere in the region. This is not corroborated by the LAB depth model of this study,

or those of Richards et al. (2020a) or Priestley et al. (2018) (Figure 3.6a; b; d). The spatial

pattern of elevated GHF coincides with anomalously thick (∼ 60 km) crust found in ANT-20.

Since the total crustal radiogenic heat content in a particular region is proportional to crustal

thickness in the employed parameterisation, thick crust steepens the geothermal temperature

gradient and therefore increases the inferred GHF. It is therefore hypothesised that the GHF

anomaly arises from a combination of two factors. First, a discrepancy between the assumed

and true crustal thickness in this region. Secondly, a discrepancy between the assumed and true

radiogenic heat production. In addition, anomalously low seismic velocities in the uppermost

mantle beneath the Gamburtsev Mountains suggest the presence of a compositional anomaly

(Shen et al., 2018b). Although the geotherm fitting methodology is designed to mitigate the

impact of locally unphysical temperature estimates that would arise from such an anomaly, it

may still reduce the ability to accurately infer heat flow from the seismic velocity structure of

this region.
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3.3.3 Reconciling Observations and Predictions of Mantle Viscosity

The Antarctic Peninsula (AP) and Amundsen Sea Embayment (ASE) are regions of special

interest to the cryosphere and sea level communities, since they are currently experiencing sig-

nificant ice mass loss and could hold important clues for determining the future stability of the

wider West Antarctic Ice Sheet. The northern Antarctic Peninsula is undergoing rapid atmo-

spheric warming, which has increased surface melt rates and contributed to ice shelf collapse

(Davies et al., 2014). Recently, three major ice shelves along the AP were lost completely in

the space of less than a decade, when Prince Gustav (1993–1995), Larsen A (1995) and Larsen

B (2002) collapsed (Nield et al., 2014). As a result, tributary glaciers flowing from the AP

plateau are accelerating and thinning (Cook and Vaughan, 2010). While the ASE accounts for

less than 4% the area of the AIS, the marine-grounded portion of the WAIS in this region ac-

counts for a quarter of the global present-day cryospheric contribution to GMSL rise (Barletta

et al., 2018). Accelerating ice flow and rapidly retreating grounding lines have been observed at

both the Pine Island and Thwaites glaciers. This recent change, combined with the reverse bed

slope beneath both glaciers, suggests that they are vulnerable to catastrophic collapse (Barletta

et al., 2018). Accurately capturing solid Earth structure beneath the AP and ASE is there-

fore of particular importance, since future ice retreat in these regions is especially sensitive to

viscoelastic bedrock uplift rates, which – if sufficiently rapid – may help to stabilise grounding

lines. Moreover, the present-day GIA rate is strongly affected by inferred thermomechanical

structure beneath sites of recent ice loss, and must be accurately calculated in order to reliably

estimate ongoing ice mass change from satellite gravity data.

Bedrock deformation rates observed by GPS can be used to shed light on solid Earth struc-

ture, since they depend on the rheology of the underlying mantle. Typically, observed deforma-

tion rates are combined with an estimate of the local ice sheet loading history and a Maxwell

viscoelastic solid Earth model, to infer a viscosity consistent with the applied constraints. For
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Study Location Ice loading history Observation
period

log10η
estimate

B18 ASE Retreat from 1900–2014 2002–2014 18.4–19.4
S21 AP Retreat from 1999–2020 1999–2020 17.5–19.0
I11 AP Overall retreat from LGM to present,

modern phases of advance and retreat
2003–2009 19.3–20.0

W15 AP Retreat from LGM to present 2009–2013 20.0–20.5

Table 3.1: Antarctic upper mantle viscosity estimates derived from geodetic obser-
vations. B18 refers to Barletta et al. (2018), S21 to Samrat et al. (2021), I11 to Ivins et al.
(2011), W15 to Wolstencroft et al. (2015). Each study assumed a particular ice loading history
to estimate the reported viscosity values, a summary of which is reported here. The observation
period represents the timeframe that best represents when data was collected.

example, the recent study of Barletta et al. (2018) provides a geodetic analysis of bedrock de-

formation rates across the ASE using six local GPS stations. Barletta et al. (2018) estimated

upper mantle viscosities in the range log10η = 18.4 to log10η = 19.4. These extremely low

viscosities imply Maxwell relaxation times of order 1 to 10 years, meaning that the topographic

response to deglaciation following the Last Glacial Maximum (LGM; ca. 21 ka) would have

already decayed away in this region. Since models of GIA in response to modern-day ice mass

loss typically assume upper mantle viscosities of η ∼ 1020 Pa s, a substantial upward revision

of viscoelastic uplift rates would be required in the ASE, implying that local ice mass loss

has been underestimated by ∼ 10% in previous GRACE-based assessments. Conversely, the

vulnerability of the WAIS in this region to catastrophic collapse would potentially be reduced

by the faster GIA response rates, since rapid grounding line uplift might help to stabilise the

ice sheet (Gomez et al., 2010).

A question which arises naturally is therefore: How well do geodetically constrained esti-

mates of mantle viscosity beneath the AP and ASE agree with the inferred thermomechanical

structure? To determine the answer, the findings of four geodetic studies have been compiled,

summarised in Table 3.1. The viscosity range obtained from each study is based on the range

of plausible upper mantle viscosities able to fit the geodetically observed horizontal and verti-

cal deformation rates. Corresponding viscosity estimates relevant to this study were extracted
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Figure 3.11: Comparison of upper mantle viscosity estimates based on GPS and seis-
mic tomographic velocity. Mean viscosity structure at 150 km depth beneath the ASE and
AP (panels a and b, respectively), with lateral sampling regions overlain in blue. Probability
density distribution of inferred diffusion creep steady-state (blue) and time-dependent (red)
viscosity compared to geodetic estimates (grey) B18, S21, I11 and W15 (panels c, d, e and f,
respectively).
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based on the ensemble of predicted diffusion creep viscosities beneath the AP and ASE. The

ASE location was taken to be 102.667W, 74.833S (in accordance with Lau et al., 2021), to ex-

tract viscosities for comparison with the GPS study B18. For each of the GPS studies compared

to in the AP region, a unique location was used, approximating the region over which satellite

data was collected in each case. For S21, the location was taken to be 68.000W, 68.000S.

For I11, 60.750W, 64.600S. For W15, 66.000W, 73.500S. A 50 km surface-equivalent lateral

averaging radius was used in each case, along with a depth window of 125 to 175 km and 150 to

175 km for the AP and ASE, respectively. The shallow bounds of the respective depth windows

were selected to reflect the lowest inferred viscosities in the upper mantle. The motivation for

this was to investigate whether the steady-state inferred viscosity structure from this study

could match up to the extremely low viscosities indicated by geodetic studies, without the need

to invoke time-dependent rheology. A deeper depth window of 125 km to 250 km and 150 km to

250 km for the AP and ASE, respectively, was also used to investigate whether higher viscosi-

ties inferred for ice age-related loading might result from deeper stress penetration associated

with the larger ice masses in play on these longer timescales (Blank et al., 2021). For each set

of parameters within the posterior ensemble, seismic velocity was converted into an estimate

of steady-state diffusion creep viscosity at each location within the chosen three-dimensional

spatial sampling window. To estimate a single viscosity value for each viscoelasticity model, an

average was calculated over all values within the spatial window. This resulted in a posterior

ensemble of viscosities associated with the given location, ready for comparison with the geode-

tic analyses. The resulting probability density distributions of inferred viscosity are shown in

comparison to their geodetically derived counterparts in Figure 3.11. A reasonable agreement

is found in the case of I11, when looking at the shallow depth window, and in the case of W15,

when looking at the deeper depth window. A poor agreement is found for B18, with little

overlap between the geodetically and tomographically inferred viscosities. An extremely poor
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agreement is found for S21, where there is no overlap at all.

Note that the extent to which the geodetic analyses agree with the inferred steady-state vis-

cosities of this study appears to depend on the modelled ice loading timescale. This observation

may indicate the presence of transient rheology, wherein the strain response of a viscoelastic

body to a given change in the stress field (i.e., loading) depends on the timescale over which

it occurs (Lau and Holtzman, 2019). Transient rheological models therefore exhibit a range of

apparent viscosities, where the latter refers to the viscosity of the Maxwell model which best fits

the observed deformation history. The rheological parameterisation used in this study, YT16,

inherently includes transient behaviour because the frequency-dependent complex compliance

is derived from a continuous spectrum of underlying relaxation timescales. The viscosity values

reported so far in this study have always referred to steady-state deformation, representing

the theoretical limit of an infinite forcing timescale. On the other hand, geodetically derived

viscosity estimates are relevant to the timescales corresponding with the forcing processes in

operation. If such timescales align with the activation of additional relaxation processes due to

transient components in the rheological model, there can be a significant discrepancy between

the steady-state and apparent viscosities associated with a given region and process. This rela-

tionship between forcing timescale and apparent viscosity, within the context of a solid Earth

exhibiting transient rheology, could therefore be responsible for the observed discrepancy.

To quantify the potential impact of time-dependent rheology on geodetically inferred vis-

cosity estimates, the transient rheological parameterisation YT16, combined with estimates

of steady-state viscosity derived from this study, were used to model the deformation rate one

would expect to observe given the ice loading histories pertaining to each of the geodetic studies.

This was achieved using the relationship

ε(t) =

∫︂ t

−∞
J(t− t′)

dσ(t′)

dt′
dt′, (3.6)
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Figure 3.12: Inverting an inferred strain history derived from transient rheology for a best-
fitting Maxwell model. Stress evolution consistent with the ice loading history assumed in
B18, relevant to the ASE, from 1900 CE to 2014 CE (panel a). Stress shown as a percentage
of its maximum value at 1900 CE. Two strain responses, each corresponding with the assumed
stress history (panel b). Firstly, a strain response based on the transient rheology parameterised
by YT16, assigned a steady-state viscosity (log10 ηYT16 = 19.75) selected randomly from the
posterior distribution of tomographically inferred values, which were averaged over the depth
range 150 to 175 km (blue; see panel c of Figure 3.11 for inferred viscosity distributions).
Secondly, a strain response based on Maxwell rheology and a viscosity (log10 ηMX = 19.27) for
which the least-squares misfit between εYT16 and εMX is minimised over the observation period
from 2002 CE to 2014 CE (red). This observation period was selected to coincide with the
period over which Barletta et al. (2018) collected their data, so as to emulate the geodetic
modelling procedure as realistically as possible. Strain normalised by the maximum strain
exhibited by the YT16 rheological model, at 2014 CE, and expressed as a percentage of this
maximum value.
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Figure 3.13: Assumed stress history, inferred transient strain, and inverted Maxwell strain for
each of the remaining geodetic studies, S21, I11 and W15. Format follows Figure 3.12. Year
in panels c, d, e and f referenced with respect to 0 CE.
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where the creep function, J(t), is the time-domain representation of its frequency-domain coun-

terpart, the complex compliance, and the ice loading history is captured by the stress evolution

σ(t). The creep function represents the time-dependent strain profile observed in response to a

unit applied stress, where the stress evolution follows the profile of a Heaviside step function.

By convolving the creep function with the full stress rate history, the total strain at each time

t can be obtained, and indeed this is what Equation 3.6 represents. The creep function can be

obtained for a general rheology by integrating the relaxation function at constant stress which

underlies both J(t) and J∗(ω), referred to as X(τ), according to

J(t) = JU + JUI(t,X) +
t

η
, (3.7)

where

I(t,X) ≡
∫︂ ∞

−∞
X(τ)

1− exp
(︁
− t

τ

)︁

τ
dτ, (3.8)

such that the terms in Equation 3.7 comprise the elastic (instantaneous), transient (interme-

diary) and viscous (steady-state) components of the deformation response, respectively. The

relaxation function represents the continuous spectrum of relaxation strengths associated with

each possible forcing timescale. An explicit parameterisation of X(τ) is provided for YT16,

which is defined as

XYT16(τ) = XB +XP , (3.9)

XB = ABτ
αB , (3.10)

XP = AP exp

(︄
− ln2

(︁
τ/τP

)︁

2σ2
P

)︄
, (3.11)

whereXB represents a monotonic relaxation background within which AB and αB are constants,

and XP a high-frequency relaxation peak, which broadens and heightens with homologous tem-
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perature via the pre-melting functions AP (Θ) and σP (Θ). For more detail on the relaxation

function and its relationship with parameterisations of the creep function and complex compli-

ance, see Section 2.3 of Takei (2017) for discussion in the context of YT16, and Chapter 4 of

Nowick and Berry (1972) for a more general treatment.

To parameterise the stress history σ(t), constant rates of loading and unloading were used

in accordance with the particular geodetic study under consideration (Table 3.1). For example,

in the case of B18, a constant rate of unloading σ̇1 was assumed from 1900 CE to 2002 CE,

after which a significantly faster rate of unloading σ̇2 was assumed, such that

σ̇2

σ̇1

= 4. (3.12)

This ratio was selected to correspond with the ratio of ice mass loss rates assumed in the

underlying geodetic study Barletta et al. (2018), and the resulting stress evolution is shown in

Figure 3.12. The objective was to incorporate a simple ice loading history as consistent with the

assumptions of each geodetic study as possible. Consistency in this regard is more important

than the accuracy of the ice loading history itself, in ensuring fair comparison. The assumed

initial and final stress values, σi and σf , of each stress history are not important as long as the

ratio between relative stress rates is correct, because while the former affect the amplitude of

the generated strain response, the apparent viscosity only depends upon the latter.

A synthetically generated pattern of deformation, εYT16(t) was calculated for the transient

rheological model by substituting ηYT16 and XYT16 into Equation 3.7 via I(XYT16), and combin-

ing it with each stress history. The same distributions of ηYT16 as used in the initial comparison

between tomographically and geodetically inferred viscosities were employed here (i.e., blue dis-

tributions of Figure 3.11). Then, the synthetically generated deformation histories were fitted

under the assumption of Maxwell viscoelasticity, treating the Maxwell steady-state viscosity,

ηMX, as a free parameter. This was achieved by replacing the creep function relevant to YT16
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with its Maxwell counterpart, which is simply expressed as

J(t) = JU +
t

ηMX

, (3.13)

i.e. there exists no intermediary transient form of deformation in the Maxwell model. By

isolating the portion of the calculated strain histories which correspond with the observation

period of each geodetic study (Table 3.1), a least-squares fitting procedure could be applied to

find the value of ηMX for which εMX(t) and εYT16(t) agree most tightly. This inversion approach

was formulated based on the work of Lau et al. (2021). An example of a synthetically generated

deformation history, and its corresponding best-fitting Maxwell equivalent, is shown for B18

in Figure 3.12, using a randomly selected steady-state viscosity from the posterior distribution

of tomographically inferred values. For the remaining studies S21, I11 and W15, Figure 3.13

shows the assumed stress evolutions and corresponding strain evolutions.

The inverted values of ηMX are apparent viscosities, which theoretically correspond with the

inferred viscosities of each geodetic study, since they each employed a Maxwell viscoelasticity

assumption in modelling their respective observations. A given apparent viscosity is dependent

on the relative amplitude and timescale of relaxation processes triggered by the ice loading

history, or in other words, its frequency content. When the tomographically inferred time-

dependent viscosities derived from this study are compared to those derived from geodetic

observations, a much better agreement than before is observed (Figure 3.11). For example,

predicted time-dependent viscosity distributions derived from this study lie almost entirely

within the range of possible values predicted by B18 and S21, when looking at the shallow

depth range. The observation that the shallow depth range provides the best fit to the geodetic

observations for the short timescale ice loading histories lends further support to the hypothesis

that time-dependent behaviour is at play. This is because one would expect GPS observations

to be sensitive to the viscosity within the portion of the mantle activated by the modelled
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loading history. In the case of short timescale and lower magnitude loading, dissipation of

stress may only have occurred within the shallow upper mantle, thus making the observed

deformation rates sensitive only to these depths. For the longer timescale ice loading histories

associated with I11 and W15, apparent viscosities are only slightly lower than their steady-state

counterparts, suggesting that viscous deformation dominates the geodetic observations relevant

to these studies. This is a possible explanation for the fact that the steady-state viscosities

inferred from this study are already in good agreement with their geodetic counterparts, prior

to time-dependent adjustment. Therefore, each of the results of this time-dependent viscosity

analysis are consistent with the notion that the solid Earth may support transient deformation.

3.3.4 Remaining Uncertainties

Despite making major progress in understanding the thermomechanical structure of the Antarc-

tic upper mantle, this work highlights outstanding challenges that limit the ability to utilise

seismological data to understand solid Earth structure and its relationship with cryospheric

evolution. A lack of geophysical data sets containing information about the deep mantle re-

stricts the precision with which one can estimate pressure-dependent behaviour. For example,

the uncertainty present in estimates of activation volume remains high after calibrating the vis-

coelasticity parameterisation, since the majority of the geophysical data relates to the shallowest

125 km of the mantle. This leads to increasing uncertainty in thermomechanical structure with

depth. In addition, the microphysical process or processes responsible for the onset of anelas-

ticity is subject to significant debate, and this translates into competing methods for modelling

anelastic effects (Faul et al., 2007; Yamauchi and Takei, 2016). As a result, heavily discrepant

predictions may be made depending on the choice of physical model (Ivins et al., 2021). With

this in mind, the inverse calibration procedure has been designed structurally to work with

any choice of viscoelasticity parameterisation. Further uncertainty relates to the particular
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viscous creep mechanism dominating Antarctic upper mantle rheology on timescales relevant

to the modelling of geodynamic processes (Lau and Holtzman, 2019). If dislocation creep is

the dominant mechanism, the diffusion creep viscosities predicted here will overestimate true

steady-state values. Nevertheless, predicted temperatures would remain robust, being reliant

only on the correct modelling of diffusionally controlled anelasticity processes at seismic fre-

quency. It must also be emphasised that this independently constrained thermal structure

significantly reduces uncertainty in dislocation creep viscosity, which, like its diffusional coun-

terpart, is strongly temperature dependent.

With respect to secondary structures calculated using estimates of three-dimensional tem-

perature variations, namely LAB depth and GHF, a few specific challenges are yet to be ad-

dressed. First, vertical seismic resolution limits make it difficult to infer LAB depth variations

smaller than ∼ 15 km. Secondly, due largely to the downward bleeding of slow shear-wave veloc-

ities associated with discrepancies between the modelled and true crustal structure, seismically

inferred temperature structure becomes unreliable close to the Moho. This means that inter-

polation must be used to estimate shallow temperature structure. While this is not expected

to influence estimates of LAB depth, since the 1200 ◦C isotherm is sufficiently deep, it will

have an effect on the estimates of heat flow, which are proportional to the surface geothermal

gradient. A lack of exposed outcrops where Antarctic GHF can be measured makes it difficult

to ground truth geophysical predictions and refine the model. In addition, poor understanding

of the range, depth variation, and lateral variation in Antarctic crustal heat production and

conductivity prevails. Since both of these parameters must be assumed to fit a steady-state

geothermal profile to the temperature-depth data, the GHF estimates produced in this study

are directly affected by this limitation. To address this, complementary geophysical methods

can be used to gain insight into crustal heat production and conductivity structure, allowing

for further refinement of GHF models. This topic is addressed in detail in Chapter 4.
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3.4 Conclusions

A probabilistic approach to the calibration of experimental parameterisations of viscoelasticity

has been developed to provide a self-consistent mapping between three-dimensional seismic to-

mographic velocity data and models of thermomechanical structure. The viscoelasticity param-

eters are calibrated with a suite of regional geophysical data constraints relevant to Antarctica,

reducing the discrepancy in physical predictions offered by different seismic tomographic veloc-

ity models, and ensuring a set of outputs compatible with well-constrained mantle properties.

It is possible to utilise a small subset (in the case of this study, 0.5%) of the overall posterior

data set generated by the Bayesian inversion to propagate shear-wave velocity into accurate

estimates of thermomechanical structure and its uncertainty, which ensures computational vi-

ability. By probing the model covariance structure, this uncertainty is significantly reduced as

compared to treating parameters independently (viscosity uncertainty reduced by 4 to 5 orders

of magnitude at 150 km depth).

Dramatic differences in viscosity structure, LAB depth and GHF are predicted between

East and West Antarctica, in accordance with other studies (Austermann et al., 2021; Barletta

et al., 2018; Priestley et al., 2018; Richards et al., 2020a; Shen et al., 2020). Evidence is found

for mostly thick lithosphere, high viscosity asthenosphere, and uniformly low GHF beneath

the EAIS. Shallow LAB depths and high GHF coincide with regions characterised by the

presence of low viscosity anomalies, such as in western Marie Byrd Land where values 30 to

50 km, 85 to 95 mW m−2, and η = 1019.5±0.3 Pa s, respectively, are found. This combination of

thermomechanical properties is consistent with the geological record of regional Plio-Pleistocene

magmatism (Ball et al., 2021; DIGIS Team, 2021), and indicates that western Marie Byrd Land,

along with the eastern Ross Embayment and Antarctic Peninsula, may be amongst the most

dynamic in response to climate and ocean forcing. High GHF may significantly increase the

flow of ice towards the continental perimeter, whereas the presence of low viscosities and thin
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lithosphere suggest much faster bedrock uplift rates than a one-dimensional average rheology,

potentially providing a stabilising effect on the grounding line (Gomez et al., 2010).

The outputs presented in this study may be used to refine understanding of ice sheet stabil-

ity in Antarctica. Models of density structure can be used to improve time-dependent models

of convectively supported surface topography, enabling correction of palaeo sea level mark-

ers used to inform ice sheet history. Self-consistently determined viscosity and LAB depth

structures, that also constrain time-dependent rheological variations, can be applied to three-

dimensional glacial isostatic adjustment studies, where uplift rates are intimately tied to rheo-

logical structure. These high-resolution estimates of thermomechanical structure will be useful

in constraining bedrock uplift rate across the continent, in turn altering corrections needed to

produce gravimetric and altimetric estimates of present-day ice mass loss rates. Seismically

inferred maps of GHF can be incorporated in new ice sheet modelling studies, where basal

sliding rates are highly sensitive to the amount of thermal energy provided from below. As a

result, the new methodology for estimating solid Earth inputs and their associated uncertainties

may enable accurate probabilistic assessment of ice sheet stability scenarios and projections of

future sea level rise.
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Chapter 4

Antarctic Geothermal Heat Flow,

Crustal Conductivity and Heat

Production Inferred From

Seismological Data

4.1 Introduction

Heat derived from Earth’s interior, and supplied to its surface, is a crucial component of ice

sheet basal conditions. The supply of thermal energy to the ice sheet-solid Earth interface can

influence basal melt and sliding, englacial rheology, and erosion, and is therefore a key factor

in governing ice dynamics (Burton-Johnson et al., 2020; Larour et al., 2012). Heat supply is

quantified by reference to geothermal heat flow (GHF), qs, which pertains to the amount of

thermal energy supplied across Earth’s surface, per unit area and time (units mWm−2). Not

only are ice dynamics highly sensitive to the supply of geothermal heat, the latter is expected to

vary significantly across Antarctica. Indeed, variations in Antarctic GHF of order 100mWm−2
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were shown in the preliminary investigation of 3.2.3. The result is that a good understanding

of the pattern and amplitude of heat supply into the base of the Antarctic Ice Sheet is a

requirement for accurately modelling its evolution.

Since thermal conduction is the dominant mechanism of heat transfer in Earth’s crust,

Fourier’s law of conduction is used to relate qs to Earth’s temperature structure,

q⃗s = −k(z = z0)
∂T

∂z

⃓⃓
⃓
z=z0

ẑ, (4.1)

qs = |qs⃗|. (4.2)

Here, k is thermal conductivity, T is temperature, z is a locally vertical depth co-ordinate,

and z0 is located at the surface. Theoretically, then, Equation 4.1 gives us a pathway to

estimating qs, via measurements of laterally varying thermomechanical structure. Indeed, local

estimates of Antarctic GHF have been made using observations of temperature and depth from

gravity-driven probes in unconsolidated sediment and boreholes drilled into ice or bedrock.

However, such measurements can only be used to infer point estimates of GHF, and each class

of borehole observation is highly limited in terms of where it can be conducted (Burton-Johnson

et al., 2020). Sediment temperature probes require deep enough water (∼ 1 km) so as not to

be significantly disrupted by long-period (∼ 1 kyr) ocean temperature cycles (Dziadek et al.,

2019). Ice borehole-derived GHF estimates are based on the assumption of thermal equilibrium

between bedrock and ice sheet; an assumption limiting data collection to the summits of ice

domes (Engelhardt, 2004). Even here, englacial temperature structure can be affected by

other heat sources, potentially contaminating the signal. A lack of accessible bedrock across

Antarctica prohibits wide-scale bedrock borehole drilling (Fisher et al., 2015).

Given these limitations on data collection, geophysical methods are the only means of

obtaining continental scale maps of GHF needed for ice sheet modelling. A number of methods
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based on magnetic, gravity or seismic data have been employed in the past (e.g., An et al., 2015;

Haeger et al., 2022; Martos et al., 2017). Whilst useful, such methods have suffered from a range

of data- and modelling-derived issues (Burton-Johnson et al., 2020). For example, difficulties

in converting field observations into estimates of Earth’s thermal structure, and the inference of

only a single isotherm, has led to large uncertainty in GHF predictions. Magnetically derived

methods suffer from issues related to assumptions on magnetic composition, spatial resolution

of magnetic anomaly data, and ability to patch together information from multiple sources.

Since gravity data are sensitive only to long wavelength changes in Earth’s crust, methods

based on these data lack spatial resolution, and require assumptions on crustal conductivity

and heat production, both of which can significantly impact predictions of GHF. Despite their

potential to vary significantly, conductivity and heat production are parameterised as laterally

homogeneous, owing to a lack of good constraint on these parameters.

In the past, seismic inferences of GHF have been limited by similar issues. Until recently, a

relative shortage of seismic data in Antarctica has limited the spatial resolution of tomograph-

ically inferred GHF (Lloyd et al., 2020). As was the case with methods based on gravity data,

poor constraint on crustal parameters has led to lateral variations being ignored, despite their

potential for large variations and consequent impact on GHF (An et al., 2015). An alternative

approach based on seismic data is to empirically relate velocity anomalies at a given depth

beneath Antarctica to those modelled beneath another continent, where densely sampled bore-

hole estimates of GHF are accessible (Shapiro and Ritzwoller, 2004; Shen et al., 2020). This

method inherently assumes that velocity anomalies imaged by different tomographic velocity

models are directly comparable. In reality, subjective choices made in the tomographic mod-

elling process such as starting model, regularisation, and parameterisation influence the result.

In addition, this method assumes that two regions with the same crustal thickness, and similar

VS structure in the shallow upper mantle, have comparable GHF. This ignores the effect that
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variations in crustal conductivity and heat production due to geochemical heterogeneity have

on surface heat supply. This method is therefore subject to a lot of the same drawbacks as the

more traditional method.

A number of recent advances allow for the establishment of a novel approach to infer GHF

from seismological data sets. Firstly, the development of ANT-20, a wave-equation travel-

time adjoint tomographic model, lays the groundwork for imaging Antarctic thermomechanical

structure and henceforth GHF at regional-scale resolution (∼ 100 km; Hazzard et al., 2023;

Lloyd et al., 2020). Secondly, the emergence of physics-based parameterisations of mantle rock

properties, constrained via laboratory experiments, has opened the door to converting seismic

shear-wave velocities (VS) directly into temperature (Faul and Jackson, 2005; Yabe and Hiraga,

2020; Yamauchi and Takei, 2016). As shown in Chapter 2 and 3, methods to calibrate these

parameterisations based on a range of geophysical data constraints allow uncertainty to be

rigorously quantified, and reduced, in such conversions. In Section 3.2.3, the aforementioned

advances were used to produce a preliminary model of Antarctic GHF and its uncertainty.

Thirdly, new geochemical analyses have improved understanding of the likely range of key

crustal parameters governing heat supply, their relationship with composition, and to what

extent they can be inferred from compressional-wave velocity (VP ) data (Jennings et al., 2019;

Sammon et al., 2022). In this chapter, a new method for estimating GHF is developed, incor-

porating sensitivity to upper mantle thermal structure via VS, as well as crustal compositional

structure via VP . This method is applied to produce a revised model of Antarctic GHF and its

associated uncertainty.

4.2 Methods

My approach to estimating GHF across Antarctica is motivated by the desire to infer geother-

mal structure in as direct a fashion as possible, without relying on empirical comparisons to
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GHF estimates derived from geologically distinct continental environments. Central to this ap-

proach is the idea of constraining the relationship between temperature and depth, T (z), across

a range of depths, rather than relying on a single isotherm. Therefore, VS data is made use

of, which is especially sensitive to geothermal structure throughout the shallow upper mantle.

Since crustal composition also plays a key role in determining heat supply, via variations in

thermal conductivity and heat production, these parameters are constrained within the mod-

elling framework. To do so, information is brought in from VP data, which provides sensitivity

to lateral variations in SiO2 content and therefore crustal conductivity. By fitting steady-state

geothermal profiles to VS-derived counterparts, and looking at how the misfit between the two

varies as a function of crustal heat production, it is possible to co-constrain conductivity, heat

production and GHF in a thermodynamically self-consistent fashion. This framework serves as

the basis for providing reasonable inferences of qs.

4.2.1 Inferring Thermal Structure from Seismic Data

The sensitivity of VS to temperature (T ) derives from the effect that temperature has on the

viscoelastic properties of mantle rock. To reliably parameterise the VS(T ) relationship, the

approach of Hazzard et al. (2023) (Chapter 2) is adopted, who calibrated the anelasticity pa-

rameterisation of Yamauchi and Takei (2016) against a suite of Antarctic geophysical data

constraints. The values of X⃗ ve from the maximum a posteriori output of Hazzard et al. (2023)

are assumed (Chapter 2). Having established a method for relating seismic velocity and tem-

perature, a geographic location {θ, ϕ} (latitude, θ, longitude, φ) within the spatial footprint of

the chosen tomographic model ANT-20 can be selected, and the corresponding radial velocity

structure VS(z) converted into an inferred geotherm T (z) (Figure 4.1a, black cross-hairs).
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Figure 4.1: Parameterising Earth structure. (a) Temperature-depth data points inferred
from ANT-20 VS (black cross-hairs) interpolated prior to fitting (red dashed line). Steady-
state geotherm fitted to seismic data (black line), subject to depth-dependent thermodynamic
constraints within the upper crust (0 ≤ z ≤ z1), lower crust (z1 < z ≤ z2), and mantle (z2 < z).
All depths referenced with respect to the crystalline basement. (b) Average crustal VP from
ANT-20 across Antarctica. (c) Crustal conductivity (k0) estimated from VP (Equation 4.8). (d)
Uncertainty in k0 based on spread in crustal VP and k0(VP ) residual (Section 4.2.5).
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4.2.2 Fitting Geothermal Profiles

Due to the likely presence of noise and artefacts in the underlying seismic data, as well as

the potential for unmodelled compositional seismic velocity variation, estimating qs directly

from seismically inferred geotherms is avoided. Instead, steady-state, thermodynamically self-

consistent geotherms are fitted to them. To prepare the VS-derived geotherms for fitting, they

are cleaned according to four algorithmic steps. Firstly, crustal velocities are removed, using

the same crustal thickness model assumed in ANT-20, for consistency. Secondly, any portion

of the geothermal profile directly beneath the Moho where the temperature gradient meets the

condition ∂T/∂z < 0.4 ◦C km−1 is removed. These two steps were found to effectively excise

anomalously slow velocities at shallow depths, which may be associated with downward bleed-

ing of crustal velocities. Thirdly, the constraint that temperature reaches 0 ◦C at the basement

depth is added. Finally, the geothermal profiles are interpolated on a 1 km depth interval,

producing a smoothly varying structure suitable for comparison with fitted geothermal profiles.

The geotherms are fitted according to a modified version of the procedure laid out in McKenzie

et al. (2005). This procedure involves iteratively updating the Moho GHF, and mechanical

boundary layer thickness, until the misfit between modelled and VS-derived geotherms is min-

imised. Once an optimal geotherm has been arrived at (Figure 4.1a, black solid line), qs can be

calculated according to the surface temperature gradient and associated thermal conductivity.

4.2.3 Parameterising Mantle Structure

In addition to providing a seismically inferred geotherm to the fitting procedure, it is also

necessary to provide a suitable parameterisation for thermal conductivity, k (Wm−1 K−1), and

heat production, h∗ (µWm−3), in the mantle and crust.

In the mantle, conductivity is calculated according to the temperature- and pressure-

dependent parameterisation of Korenaga and Korenaga (2016). The parameterisation is adapted
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to assume a grain size of 0.1 cm, relevant to the calculation of radiative thermal conductivity.

This parameterisation will be referred to as k = km(T, P ). In accordance with the relatively

low abundance of heat-producing elements in the upper mantle, a mantle heat production

of h∗ = 0.0 µWm−3 is assumed. Regarding assumptions of adiabatic mantle properties, the

constant-pressure heat capacity is set to CP = 1187 J kg−1 K−1, and thermal expansivity to

α = 3× 10−5 K−1. A mantle kinematic viscosity of ν = 9× 1016 m2 s−1 is assumed.

4.2.4 Parameterising Crustal Structure

To parameterise thermal conductivity in the crust, the following parameterisation is utilised

(Goes et al., 2020), which will be referred to as k = kc(k0, T, P ),

kc(k0, T, P ) =
k0
n

(1 + βP )

(︄
n− 1 + exp

[︃−(T − 25)

300

]︃)︄
. (4.3)

In this equation, the factors β = 0.1, and n = 6.4 − 2.3 ln (k0), and k0 is the reference

crustal conductivity at atmospheric conditions (P = 0 GPa, T = 25 ◦C). Note that this

parameterisation was misprinted in the original text of Goes et al. (2020); the authors have

clarified that the expression above is the correct version.

To parameterise heat production, the crust is divided into two layers of equal depth. A

uniformly distributed heat production is assumed throughout each layer, set to h∗ = h∗cu in the

upper crust, and h∗ = 0.3 µWm−3 in the lower crust. This simple parameterisation has been

adopted to avoid imposing precise details of the depth-dependence of h∗ a priori, which are not

known. When the upper crustal heat production is set to h∗cu =1.0 µWm−3, the parameterisa-

tion is consistent with globally averaged heat production values obtained from a comprehensive

analysis of crustal geochemistry and seismic velocity (Sammon et al., 2022).
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Figure 4.2: Fitting seismically inferred geotherms. (a) Constant reference conductvity,
k0 = 2.5Wm−1 K−1, variable upper crustal heat production, h∗cu in range 0.0 to 6.0 µWm−3. (b)
Variable reference conductivity, k0 in range 1.0 to 4.0 Wm−1 K−1, constant upper crustal heat
production, h∗cu = 0.5 µWm−3. (c) Trade-off between crustal conductivity and upper crustal
heat production in misfit between seismically inferred and steady-state fitted geotherm (k0 and
h∗cu combinations used in panels (a) and (b) marked by cross-hairs).
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4.2.5 Sampling Crustal Parameters to Optimise GHF

Reference thermal conductivity, k0, and upper crustal heat production, h∗cu, are treated as later-

ally variable parameters in the model, so as to account for the influence of crustal composition

on geothermal structure. Both parameters could exhibit lateral variability within the approxi-

mate ranges k0 ∼ 1.0 to 4.0 Wm−1 K−1 and h∗cu ∼ 0.0 to 6.0 µWm−3 (Hasterok and Chapman,

2011; Jennings et al., 2019; Lösing et al., 2020; Sammon et al., 2022). Such variations can

have a significant impact on qs. For example, it was calculated that for a typical VS-derived

input geotherm, varying k0 and h∗cu within the aforementioned ranges results in surface GHF

variations of qs ∼ 20 to 170 mWm−2. The lowest (highest) inferred qs occurs when both k0

and h∗cu are minimised (maximised). This observation can be rationalised by considering the

dependence of qs on each crustal parameter in turn. Recall the definition of qS,

qs =

⃓⃓
⃓⃓−k(z = z0)

∂T

∂z

⃓⃓
⃓
z=z0

⃓⃓
⃓⃓. (4.4)

Firstly, whilst thermal conductivity throughout the crust trades off negatively with the surface

geothermal gradient, the presence of the surface thermal conductivity,

k(z = z0) = kc(k0, T = 0 ◦C, P = 0GPa) ≈ k0 (4.5)

in Equation 4.4 dominates, meaning that overall, qs and k0 trade-off positively with one another.

Secondly, to understand the relationship between qs and h∗cu, consider the simplified case of

constant crustal conductivity kc = k0, in which case surface heat flow can be expressed as

qs = k0
∂T

∂z

⃓⃓
⃓
z=z1

+

∫︂ z0

z1

h∗(z)dz, (4.6)
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where z0 represents the surface depth, and z1 represents the depth to the base of the upper crust.

The parameter z0 can freely be assigned to z0 = 0 km, according to convention. Upper crustal

heat production is uniform in the parameterisation, and so this equation simplifies further to

qs = k0
∂T

∂z

⃓⃓
⃓
z=z1

+ h∗cuz1. (4.7)

Since the choice of k0 and h
∗
cu has a second-order impact on the temperature gradient at the base

of the upper crust (first term of Equation 4.7), qs is approximately proportional to the choice

of upper crustal heat production. This conclusion remains valid when the crustal conductivity

parameterisation kc(k0, T, P ) is reintroduced. As a result, both k0 and h∗cu trade off positively

with qS, in agreement with the aforementioned result that the lowest (highest) inferred qS

occurs when both k0 and h∗cu are minimised (maximised).

In order to optimise predictions of GHF at each location, k0 and h∗cu are co-varied, and

the least-squared misfit between VS-inferred and fitted geotherms as a function of the two free

parameters is evaluated (Figure 4.2). If the misfit space at each location were to exhibit a global

minimum, this would allow for simultaneous extraction of best-fitting k0, h
∗
cu and qs. However,

as might be expected, it is found that k0 and h∗cu trade off significantly with one another.

This trade-off can be visualised by holding k0 constant and varying h∗cu, and vice versa, and

observing the similarity in fitted geotherms (Figure 4.2, panels a-b). Of course, this similarity

is also borne out in the misfit space, where valley-like minima are seen (Figure 4.2c). Since qs

trades-off positively with both k0 and h∗cu, it is vital to be able to locate where in the valley

of the misfit space the solution lies. To resolve this issue and break the observed trade-off,

additional information is required, which is obtained by utilising an independent geophysical

constraint on k0.

To gain insight into laterally varying crustal conductivity, a model of crustal VP (km s−1,

Figure 4.1b) is drawn on. The same VP model as was assumed in ANT-20 is used, for consis-
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tency with the chosen crustal thickness model, and the VS-derived geotherms. Jennings et al.

(2019) relate VP to k0 via laboratory measurements on igneous rocks spanning a wide range of

compositions. They found that SiO2 content is the dominant control on thermal conductivity.

By making use of the empirical relationship,

k0(VP ) = a0 + a1VP + a2V
2
P ± ϵ, (4.8)

a0 = 3.162× 101 Wm−1 K−1,

a1 = −8.263× 10−3 Wm−2 K−1 s−1,

a2 = 5.822× 10−7 Wm−3 K−1 s−2,

ϵ = 0.31 Wm−1 K−1,

as provided by Jennings et al. (2019), Antarctic crustal conductivity is estimated by averaging

crustal VP (in km s−1) at each continental location, and converting it into k0 (Figure 4.1c).

In addition, the spread in VP data within the crust at each location is utilised, along with

the k0(VP ) fitting residual ϵ = 0.31 Wm−1 K−1, to estimate an uncertainty in the predicted

conductivity (Figure 4.1d).

Since independent predictions of k0(θ, φ) derived from VP data are now accessible, it is pos-

sible to locate physically plausible regions of k0 and h∗cuspace. The process begins by sampling

a value of k0 from a Gaussian distribution at each location, according to

k0 ∼ N
[︁
µ(k0), σ(k0)

]︁
, (4.9)

where µ(k0) is given by the empirical prediction of Equation 4.8, and σ(k0) is given by the

uncertainty associated with this prediction (Figure 4.1). For each sampled value of k0, the
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corresponding best-fitting value of h∗cu is extracted, as well as the qs associated with this combi-

nation of crustal parameters. By repeating this sampling procedure, distributions of k0, h
∗
cu and

qs are built up. These distributions are summarised at each location using a mean and standard

deviation, providing Antarctic GHF predictions along with an estimate of their uncertainty.

4.3 Results and Discussion

In this section, the crustal parameter sampling method described in the previous section is

applied. First, statistical summaries of the ensemble predictions of Antarctic upper crustal heat

production are shown. Second, estimates of Antarctic GHF are presented. In the discussion

that follows, GHF values are compared to those of previous studies, as well as local values

derived from in situ temperature probe observations in boreholes and unconsolidated sediment.

Then, in the context of these comparisons, the novel procedure developed in this study to

infer GHF from VS and VP information is appraised. Finally, the most pertinent outstanding

challenges in the domain of Antarctic GHF are discussed.

4.3.1 Antarctic Upper Crustal Heat Production Estimates

In Figure 4.3, a summary is shown of the obtained distribution of upper crustal heat production

(h∗cu) values. Spatially averaging over the Antarctic continental region, h∗cu = 1.2±1.2 µWm−3.

Owing to the dichotomy between West and East Antarctica in terms of tectonic history, as well

as inferred thermal structure, it is instructive to review the inferred h∗cu between the two sub-

continents. To do so, the satellite-mapped drainage network of Zwally and Giovinetto (2011) is

utilised to separate West and East Antarctica. In West Antarctica, h∗cu = 4.2± 1.5 µWm−3. In

East Antarctica, h∗cu = 0.3± 0.3 µWm−3. An interesting feature of the upper crustal heat pro-

duction inferences is that regions that are inferred to have been impacted in the past ∼ 35 Myr

by intraplate basaltic magmatism and/or episodes of rifting (e.g., the Alexander Island region of
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Figure 4.3: Upper crustal heat production. (a) Mean. (b) Standard deviation.

the Antarctic Peninsula, Marie Byrd Land and the Victoria Land Basin; LeMasurier, 2008; Sauli

et al., 2021) correspond with very high upper crustal heat production values (h∗cu ≥ 4 µWm−3).

Such inferences may be affected by a form of unquantified uncertainty in the modelling frame-

work: the potential for the goethermal profile to be in transient- rather than steady-state. If

thermal perturbations associated with these geodynamic events locally thinned the subcon-

tinental lithosphere, present-day geotherms may not be in equilibrium. For identical values

of upper crustal heat production and lithospheric thickness, these transient geotherms would

have warmer temperatures at crustal levels than steady-state counterparts. The assumption

of thermal steady-state in the inverse framework may therefore lead us to infer unrealistically

high h∗cu values in order match these elevated crustal temperatures. Discrepancies in inferred

h∗cu and geotherm shape between optimal transient and steady-state temperature profiles may

also have some impact on GHF (qs) predictions; however, steady-state profiles can be used

to reasonably approximate transient geotherms predicted for a range of geodynamic settings

(Goes et al., 2020).
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To test the possible impact of transient heat conduction on h∗cu and qs inferences, a series of

tests focused on Alexander Island and Amundsen Sea Embayment are undertaken, both regions

affected by Neogene uplift and volcanism. The timing of peak rock uplift in these regions is

inferred from thermochronometric data and assumed to represent the time at which the litho-

sphere was thinned to its minimum value (t0). These peaks are inferred to have occurred at

ca. 32 ± 4 Ma on Alexander Island, and ca. 29 ± 1 Ma in the Amundsen Sea Embayment,

potentially driven by mantle upwelling related to a slab window and a mantle plume, respec-

tively (LeMasurier, 2008; Twinn et al., 2022). The approach outlined in Stephenson et al.

(2023), and in the supplements of Hazzard et al. (2023), is used to simulate lithospheric cooling

and re-thickening following these periods of active thinning and magmatism, treating mantle

potential temperature and upper crustal heat production as free parameters. Optimal values

for these parameters, as well as the time since the lithosphere thinned to its minimum extent

(τ = t− t0), are then determined based on the misfit between the VS-derived geotherm in each

region and the simulated geotherms.

Parameterisation

Time-dependent cooling is calculated by solving the one-dimensional heat equation expressed

as

ρ(P, T,X)CP (T,X)
∂T

∂t
=

∂

∂z

[︃
k(P, T,X)

∂T

∂z

]︃
+ h∗(X), (4.10)

where t is time, z is depth, T is temperature, P is pressure, X is composition, ρ is density,

CP is the isobaric specific heat capacity, k is the thermal conductivity, and h∗ is the internal

radiogenic heat production. In each region, self-consistency is ensured by parameterising the

physical properties that are held fixed (e.g., X, ρ, CP and k) in an identical manner to the

steady-state geotherm calculations.

Equation 4.10 is solved numerically with an unconditionally stable time- and space-centered
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Crank-Nicholson finite difference scheme that includes a predictor-corrector step (Press et al.,

2007). Accordingly, Equation 4.10 is recast as

T n+1
j + A

⎛
⎝−

km
j+ 1

2

∆zmj
T n+1
j+1 +

(︄
km
j+ 1

2

∆zmj
+

km
j− 1

2

∆zmj−1

)︄
T n+1
j −

km
j− 1

2

∆zmj−1

T n+1
j−1

⎞
⎠ (4.11)

= T n
j + A

⎛
⎝
km
j+ 1

2

∆zmj
T n
j+1 −

(︄
km
j+ 1

2

∆zmj
+

km
j− 1

2

∆zmj−1

)︄
T n
j +

km
j− 1

2

∆zmj−1

T n
j−1

⎞
⎠+ Ah∗mj

(︂
∆zmj +∆zmj−1

)︂
,

where

A =
∆t(︃

ρmj C
m

P j

(︂
∆zmj +∆zmj−1

)︂)︃ , (4.12)

and ∆t is the time step, ∆z is the depth spacing between nodes, and n and j are the time

and depth indices, respectively. Equation 4.11 is solved by tridiagonal elimination Press et

al., 2007. For the initial predictor phase of each time step, m = n, while in the subsequent

corrector phase, m = n + 1
2
. A Lagrangian reference frame is used, whereby ∆zmj is initially

set to 1 km (i.e., when m = 0), then scales with thermal contraction in subsequent timesteps.

These timesteps are calculated using a Courant-Friedrichs-Lewy condition calculated according

to

∆t = minj

⎡
⎢⎢⎣

(︂
∆z0j

)︂2
ρ0jC

0
P j

2.2k0j

⎤
⎥⎥⎦ ∼ 5 kyr. (4.13)

T n+1 typically converges to within a tolerance of 0.001◦C after the corrector phase.

Boundary Conditions

All models consist of crustal and mantle layers. Crustal thickness (zc) is set to locally inferred

values, where zc = 18 km for Alexander Island and zc = 23 km for the Amundsen Sea Embay-

ment. In both cases the underlying mantle extends from the Moho to an assumed equilibrium

plate thickness, zp. The initial depth to the LAB, after the cessation of magmatic activity and
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lithospheric thinning, is assumed to be z0LAB = 25 km. To account for the possible presence

of a thermal anomaly beneath the plate, initial asthenospheric potential temperature, T 0
p , can

vary between 1333◦C, which is assumed to be the temperature of ambient mantle, and 1633◦C

(i.e. an excess temperature of 300 °C).

If the lithospheric mantle were instantaneously thinned, it is likely that the remaining man-

tle would not be thermally equilibrated. Nonetheless, since the resulting mechanical boundary

layer is thin, temperatures will rapidly reach steady state and minimise the impact of thermal

disequilibration. Consequently, initial temperature profiles are obtained by combining the pa-

rameters outlined above with the steady-state geotherm fitting procedure previously outlined.

For each combination of h∗cu, and T
0
p , the steady-state geotherm consistent with z0LAB is found

by iterating through a range of mechanical boundary layer thicknesses (2–60 km), and selecting

the temperature profile for which the depth to the 1200◦C isotherm is equal to z0LAB. For each

value of h∗cu and T 0
p , the initial thermal structure is found by searching for a steady-state that

yields the assumed minimum LAB thickness (z0LAB = 25 km).

To simulate the potential waning of the imposed heat source through time, an evolving

basal boundary condition is imposed. At t = 0, T (z) is given by the initial isentrope defined

by T 0
p below the base of the thermal boundary layer (i.e., the shallowest depth at which the

geothermal gradient, ∂T
∂z
, drops below 0.5◦C km−1). In later timesteps, the depth at which

this boundary condition is imposed, zb, increases according to a prescribed sinking rate, vz =

1 mm yr−1, until the deepest model node (i.e. zb = zp = 125 km) is reached, whereupon the

basal boundary depth remains fixed. Simultaneously, from t = 0–100 Myr, the temperature

applied at the basal boundary decays linearly to that of the ambient mantle isentrope (i.e.

Tp = 1333◦C) at the relevant depth. Beyond t = 100 Myr, the basal temperature is assumed

to remain equal to that of the ambient mantle isentrope at the appropriate depth.
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Optimisation Strategy

A three-parameter sweep is carried out to find the combination of initial potential tempera-

ture (T 0
p ), upper crustal heat production (h∗cu), and time since minimum lithospheric thickness

was obtained (τ) that yields optimal fit to the VS-inferred geotherm in each location. The

temperature evolution is then calculated for 150 Myr from this point. Misfit between tomo-

graphically determined geotherms and predicted transient temperature profiles is calculated for

each geotherm prediction

χT =

⌜⃓
⎷⃓ 1

M

M∑︂

i=1

(︁
T t
i − T v

i

)︁2
, (4.14)

where T v
i and T t

i are VS-derived and calculated temperature profiles for ith measurement, re-

spectively. M = 126 is the number of depth points used in the calculation, in which both

profiles are interpolated at 1 km intervals from 0–125 km below the basement. Note that al-

though thermal evolution is calculated over 150 Myr, when obtaining optimal parameters for

each location the search is restricted to τ < τmax, where τmax represents the maximum ther-

mochronologically constrained age of peak rock uplift, which is presumed to coincide with the

time at which minimum lithospheric thicknesses were reached (36 Ma and 30 Ma for Alexander

Island and Amundsen Sea Embayment, respectively).

Heat Flow Inference

Three key results emerge from the analysis. First, transient geotherms provide significantly

better fit to the VS-derived geotherms at both sites (∼65–80% lower χT ), implying that these

regions of West Antarctica may not be in thermal steady-state. Secondly, the best-fitting tran-

sient geotherms have consistently lower h∗cu values than those inferred from the steady-state

fits used to construct the revised HR24 heat flow model. Optimal h∗cu values for Alexander

Island and Amundsen Sea Embayment transient geotherms are 4.2 µWm−3 and 5.2 µWm−3,
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Figure 4.4: Alexander Island transient geotherms. (a) Geotherms. Crosses/red dashed
line = raw/interpolated VS-derived geotherm; black solid line = best-fitting steady-state
geotherm (as used in HR24 heat flow model); coloured lines = transient geotherms labelled by
time in Myr since lithosphere thinned to minimum value (τ); black dashed line = plate thick-
ness (zp = 125 km); dark grey line = Moho; light grey line = upper crust-lower crust boundary;
qsss = heat flow for best-fitting steady-state geotherm; qts = heat flow for best-fitting transient
geotherm. Inset shows mean upper crustal heat production; star = location of Alexander Island.
(b) Misfit between VS-derived and transient geotherms as a function of initial mantle poten-
tial temperature (T 0

p ) and upper crustal heat production (h∗cu). Blue circle = global minimum;
dashed blue line = 110% of global minimum; solid blue line = misfit for best-fitting steady-state
geotherm; red square = optimal parameter values for best-fitting steady-state geotherm. (c)
Misfit as a function of T 0

p and time since lithosphere thinned to minimum value (τ). Red line
= optimal parameter value for best-fitting steady-state geotherm. (d) Misfit as a function of
h∗cu and ∆T .
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Figure 4.5: Amundsen Sea Embayment transient geotherms. Panels follow Figure 4.4.
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respectively. In contrast, the optimal value for both steady-state geotherms is 6.0 µWm−3, the

upper limit allowed within the model framework (i.e., if a higher upper bound were set, the dis-

crepancy in optimal h∗cu between transient and steady-state geotherms would likely be larger).

Finally, heat flow predictions are demonstrated to be minimally impacted by uncertainty con-

cerning which model parameterisation should be implemented (i.e., transient or steady-state).

Optimal heat flow values differ by less than 5% for Alexander Island and Amundsen Sea Em-

bayment. In both cases this mismatch is smaller than the uncertainty on the steady-state

inference. Taken together, these results indicate that the steady-state geotherm assumption is

likely leading to overestimation of upper crustal heat production in locations like the Amundsen

Sea Embayment and Alexander Island. However, the impact of this simplification on heat flow

inferences is small. This result corroborates the more qualitative analysis conducted in Goes

et al. (2020) and underlines that, although h∗cu inferences may be locally incorrect, significantly,

heat flow estimates are accurate.

4.3.2 Antarctic GHF Estimates

Resulting estimates of Antarctic GHF are shown in Figure 4.6. The results indicate high qs in

West Antarctica, where heat supply into the base of the Antarctic Ice Sheet is estimated to vary

between 60 and 130 mWm−2, and is on average 97±14mWm−2 (median, and median absolute

deviation, respectively). Such GHF values are significantly higher than the global continental

average, qs = 67±47mWm−2 (as inferred from gravity-driven probe and borehole temperature-

depth data), and are in fact intermediate between the former and the global average over

continental rift zones, qs = 114 ± 94mWm−2 (Lucazeau, 2019). This result is consistent

with recent tectonic activity, evidence for Cenozoic magmatism, and inferences of a thermal

anomaly beneath West Antarctica (Ball et al., 2021; Barletta et al., 2018; Hazzard et al.,

2023). The distribution of qs values within the aforementioned range is relatively uniform,

127



implying significant lateral heterogeneity across West Antarctica. Maximum qs is inferred at

the continental perimeter in the Amundsen Sea region, and in the northern Antarctic Peninsula.

In East Antarctica, the results indicate qs in the range 20 to 120 mWm−2. Note that the

presence of above-continental-average GHF values within this range is indicative of the fact that

not all of the defined East Antarctic region is underlain by cold, cratonic material. However,

the distribution of inferred GHF is heavily skewed towards lower values, which is borne out in

the spatial average 30±8 mWm−2. Such low values are consistent with globally averaged GHF

estimates in continental regions of Archean age, qs = 46± 21mWm−2 (Lucazeau, 2019).

For the most part, the spatial pattern of GHF uncertainty, σ(qs), is similar to that of the

GHF prediction itself, µ(qs). The ratio of these two predictions, σ(qs)/µ(qs), is on average

16 ± 10% over the Antarctic continent. Elevated proportional uncertainty in GHF structure

is estimated in Coats Land and Dronning Maud Land in East Antarctica, in parallel with

anomalously high uncertainty in heat production. The least-squared misfit between inferred

and modelled geotherm is relatively insensitive to the choice of heat production here, reduc-

ing the ability to constrain this parameter and hence qs. Anomalously low qs uncertainty

(σ(qs) < 10 mWm−2) is estimated at the Amundsen Sea Embayment and Ross Ice Shelf, as

well as along the grounding line between these two regions. These areas are characterised by

high inferred GHF in the region of 100 to 130mWm−2. The uncertainty here is artificially

low owing to the inferred heat production lying at the top of the parameter sweep range,

h∗cu = 6.0 µWm−3 (Figure 4.3). Since the seismically inferred geotherm here is systematically

hotter than the modelled profile, the inferred value of h∗cu is insensitive to variations in crustal

thermal conductivity, and thus exhibits no variation. This causes an artificial reduction in the

GHF uncertainty, which can be related back to the discussion of transient geotherms in the

previous section. Optimal transient geotherms were found to require less extreme h∗cu values

than their steady-state counterparts, meanwhile GHF predictions were near-identical. There-
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Figure 4.6: Seismically inferred GHF. (a) Mean. (b) Standard deviation. (c) Distribution
over West Antarctica (region defined according to satellite-mapped drainage networks of Zwally
and Giovinetto, 2011). (d) Same as (c), East Antarctica.
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fore, the upper limit of the heat production in the modelling framework was not increased, since

h∗cu values in excess of 6.0 µWm−3 are inconsistent with the range of physically plausible values

based on continental geology (Artemieva et al., 2017; Sammon et al., 2022), and unreason-

able increases in h∗cu would be required to attempt to fit the inferred geotherm. Predictions of

GHF uncertainty in these regions are thus artificially suppressed, however the GHF predictions

themselves remain trustworthy.

4.3.3 Comparison With Previous Studies

A comparison of the GHF model with those from previous studies utilising a range of approaches

is presented in Figure 4.7. Consistent across all studies, a long-wavelength pattern of elevated

heat supply in West Antarctica is observed, alongside more uniformly low heat supply in East

Antarctica. However, short-wavelength (∼ 1, 000 − 10, 000 km) structure differs significantly

between models (both in terms of spatial pattern, and amplitude), reflecting the range of data

sets and modelling assumptions used to construct them. In particular, the model (HR24,

Figure 4.7) spans a significantly greater range (110mWm−2) than its comparators, with the

exception of the two magnetic studies Maule et al. (2005) and Martos et al. (2017), which

exhibit exceedingly high peak GHF values of 190mWm−2 and 240mWm−2 respectively. The

higher amplitude of GHF variations in this study compared to most models can be explained

by the incorporation of laterally heterogeneous crustal composition. In East Antarctica, below-

average crustal heat production is inferred, and in West Antarctica the opposite; the combined

effect of which is to broaden the range of inferred qs. As compared to a directly analogous

model assuming constant k0 = 2.5 Wm−1 K−1 and h∗cu = 1.0 µWm−3 (HR23, Figure 4.7),

a 30% increase in maximum Antarctic qs, and a 50% reduction in minimum Antarctic qs is

predicted (Hazzard et al., 2023).
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Figure 4.7: GHF Model Comparison. (a)–(h) Geophysical GHF inferences: HR24 – in-
ferred directly from VS and VP (this study); HR23 – inferred directly from VS (Hazzard et
al., 2023); A15 – inferred directly from VS (An et al., 2015); H22 – inferred via joint seis-
mic and gravity inversion (Haeger et al., 2022); SR04 – inferred empirically via VS (Shapiro
and Ritzwoller, 2004); S20 – inferred empirically via VS (Shen et al., 2020); FM05 – inferred
from magnetic anomaly data (Maule et al., 2005); M17 – inferred from magnetic anomaly data
(Martos et al., 2017). GHF inferences derived from gravity-driven probes and boreholes over-
lain as coloured capsules/circles. Capsules used where 2+ local data points available (coloured
by lowest-average-highest local estimate from bottom-middle-top). Circles used where 1 local
data point available. Note that HR24 has been extended into the oceanic domain to allow
more complete comparison with local data. In the oceanic domain k0 = 2.6 Wm−1 K−1 and
h∗cu = 0.0 µWm−3 are assumed, in keeping with oceanic crustal composition (Grose and Afonso,
2013; Richards et al., 2018). (i)–(p) Relationship between geophysically and locally inferred
GHF (Section 4.3.4), same studies as (a)–(h). Data points and associated error bars show the
mean and range of local/geophysical GHF values at each location, respectively. Statistics sum-
marising local-geophysical agreement are: r = Pearson’s r-value correlation coefficient; RMS =
root-mean-square deviation (values reported in the form a±b [c], where a=median, b=median
absolute deviation, c=value calculated ignoring data uncertainty). Gray data points correspond
to locations where only one local GHF inference is available (i.e., circles in panels (a)–(h)) and
are not included in model statistics.

131



Figure 4.8: Location of GHF inferences derived from local data after collection into
distinct spatial groups. Integer values next to data points refer to the number of local GHF
inferences compiled at each location.

4.3.4 Comparison With Local Data

Despite the sparsity of Antarctic GHF estimates derived from in situ temperature probe obser-

vations in boreholes and unconsolidated sediment, these data can be utilised to independently

assess geophysically informed models of qs. Inferences of GHF from borehole probes into either

bedrock or unconsolidated sediment were extracted from the New Global Heat Flow database

of Lucazeau, 2019, providing 229 individual measurements within the proximity of Antarctica.

Nine additional data points based on boreholes probes into unconsolidated sediment were ex-

tracted from Dziadek et al., 2021. A further five GHF inferences based on temperature profile

inversions from ice borehole data were added (Dahl-Jensen et al., 1999; Engelhardt, 2004; Hon-

doh et al., 2002; Price et al., 2002; Salamatin et al., 1998). It is important to treat in situ

inferences carefully, since they are representative of localised temperature structure, and are
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potentially susceptible to contamination by thermal signals caused by frictional heating at the

base of the ice sheet, hydrological circulation, and local topography (Colgan et al., 2021; Shen

et al., 2020). In addition, limited lateral resolution in the chosen VS model will smooth out

GHF variations on spatial scales smaller than ∼ 100 km, diminishing the ability to accurately

compare to local estimates. Therefore, local GHF records from gravity-driven probes and bore-

holes are collected into spatially separate measurement groups and geophysically inferred GHF

values are extracted within a 100 km radius of the centroid of each group. The location of

each measurement group, along with the number of local GHF inferences compiled into each

record, is shown in Figure 4.8. Note that local GHF inferences exceeding 200mWm−2 are

excised. Such values are expected to be representative of localised advective signals (e.g., from

hydrological circulation), rather than the conductive heat flow characterising the measurement

region as a whole. This expectation stems from the fact that, even for the shallowest LAB

depth observed across Antarctica (∼35 km), optimised plate cooling models find a correspond-

ing oceanic heat flow value of only ∼150mWm−2 (Hazzard et al., 2023). This number will

closely approximate the upper bound of the purely conductive contribution to Antarctic heat

flow, since oceanic regions are characterised by transient geotherms and thin crust. Local mea-

surement groups contributed to by only one local study were also ignored in the calculation of

quantitative model statistics. Such locations lack sufficient information to establish the uncer-

tainty in local data. The geophysical studies used for comparison with local data are HR24

(this study); HR23 (Hazzard et al., 2023); A15 (An et al., 2015); H22 (Haeger et al., 2022);

SR04 (Shapiro and Ritzwoller, 2004); FM05 (Maule et al., 2005); S20 (Shen et al., 2020);

M17 (Martos et al., 2017). Since nearly all local data were obtained off the coast of Antarctica,

the number of local-geophysical comparison points available for use was limited in the case of

the studies S20 and M17, whose spatial footprints do not extend offshore. Only four locations

were close enough to continental Antarctica to enable comparison with M17 data, and only six
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in the case of S20. 18 local-geophysical comparison points were available for FM05, and 22

points were available for the remaining studies (HR24, HR23, A15, H22 and SR04).

Geophysical Model N
Range – Local
(mW/m2)

Range
(mW/m2)

Pearson’s r
RMS

(mWm−2)

HR24 (this study) 22 92.3 87.2 0.49± 0.07 [0.62] 29.2± 2.6 [22.2]
HR23 22 92.3 61.2 0.29± 0.07 [0.36] 30.0± 3.3 [24.8]
A15 22 92.3 38.7 0.14± 0.08 [0.18] 33.2± 4.0 [28.8]
H22 22 92.3 22.3 0.21± 0.14 [0.47] 34.3± 4.1 [28.0]

SR04 22 92.3 79.5 0.16± 0.18 [0.48] 66.2± 8.8 [25.6]
FM05 18 91.4 29.6 0.03± 0.17 [0.22] 43.4± 5.3 [30.7]
S20 6 62.1 16.2 −0.04± 0.3 [-0.22] 37.6± 6.6 [31.7]
M17 4 34.5 73.1 0.36± 0.36 [0.76] 41.2± 16.1 [31.6]

Table 4.1: Local-geophysical GHF comparison statistics. N is the number of comparison
points. Range – local is the spread in locally inferred GHF across all local-geophysical compar-
ison points relevant to the geophysical model of interest. Range is the corresponding spread
in geophysically inferred GHF. Pearson’s r and RMS are the correlation coefficient and root-
mean-square deviation, respectively, between local and geophysical data. Statistics reported
in the form a ± b [c] (a=median, b=median absolute deviation, c=value calculated without
consideration of uncertainty).

Three measures are used to quantitatively assess agreement between inferences of GHF from

local and geophysical data. Firstly, the range of geophysically predicted GHF is calculated at all

local-geophysical comparison points, and evaluated in terms of how it compares to the equivalent

range from local data. This measure gives us a broad idea of whether a given model can capture

the amplitude of spatial heterogeneity in Antarctic GHF suggested by local observations. Note

that these ranges reflect GHF variability only at locations for which local data are available.

These data points are limited, so the values do not correspond to the total range of a given GHF

model. Secondly, Pearson’s product-moment correlation coefficient (r) is used to investigate the

extent to which there is a positive linear relationship between local and geophysical predictions.

Thirdly, the root-mean-square (RMS) difference between local and geophysical predictions is

utilised, which provides a summary of the average level of agreement across all comparison

points. The RMS will therefore be reduced if a strong positive linear relationship is present

in the data (compared to a weak correlation), but the relationship must also be of the right

intercept and gradient to minimise disagreement. The latter two measures, r and RMS, are

134



calculated both with and without consideration of geophysical and local uncertainty according

to the following procedure.

Let the spatially variable nlocal refer to the number of local GHF inferences compiled into

a given local-geophysical comparison point (nlocal is displayed next to the location of each

comparison point in Figure 4.8). If nlocal ≥ 10, it is assumed that the distribution of local GHF

values can be well approximated using a normal distribution. If 2 < nlocal < 10, this is not a

safe assumption and therefore a uniform distribution covering the range of local inferences is

assumed. As mentioned above, due to the inherent noisiness of heat flow data, points are ignored

in the case where nlocal = 1. On the geophysical side, distributions of inferred GHF values within

reach of each local measurement group are typically complex (asymmetric and/or multimodal).

To circumvent this issue, empirical geophysical GHF distributions are calculated at each local-

geophysical comparison point using a kernel density estimation. Having established a method

for estimating the uncertainty on each data type, random sampling is used to simulate possible

variations of the data. 50, 000 trials were conducted, where each trial consists of drawing a

random data set from the local and geophysical GHF distributions. Pearson’s r-value and RMS

was recorded for each trial, and summarised using a median and median absolute deviation at

the conclusion of all trials. Ignoring data uncertainty, r and RMS values were also calculated by

taking mean local and geophysical GHF as the data vector representative of each comparison

point.

Each of the aforementioned statistical measures are reported in Table 4.1. It is found that

the model corresponding with this study, HR24, contains a range of predicted GHF values most

consistent with the local data. Furthermore, HR24 produces the highest Pearson’s correlation

coefficient value, R = 0.49 ± 0.07 and lowest root-mean-square deviation, RMS = 29.2 ±

2.6 mWm−2 (when taking data uncertainty into account). The next best performing study

in terms of correlation coefficient is M17, for which only four local-geophysical comparison
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points were available. It is found that M17 is one of the worst performing studies in terms

of RMS deviation. The next best performing study after HR24 in terms of RMS deviation

is HR23. It should be noted that two GHF models frequently used in ice sheet modelling

studies, SR04 (r = 0.16± 0.18, RMS = 66± 9 mWm−2) and FM05 (r = 0.03± 0.17, RMS =

43±5 mWm−2) (Maule et al., 2005; Shapiro and Ritzwoller, 2004), perform particularly poorly

against independent data as compared to HR24.

4.3.5 Methodological Appraisal

There are a few reasons why the modelling approach applied in this study may allow us to arrive

at estimates of GHF more consistent with independent data than previous studies. Firstly,

the use of a geophysically constrained parameterisation of mantle viscoelasticity enables VS

structure to be mapped directly into temperature over a range of upper mantle depth slices.

This stands in contrast to other studies, such as those based on magnetic data, where only

a single isotherm associated with the Curie depth is constrained (Martos et al., 2017; Maule

et al., 2005). As a result, more reliable estimates of the geothermal gradient can be made.

Secondly, the incorporation of crustal VP information provides us with sensitivity to lateral

variations in thermal conductivity, a parameter which affects qs both directly via its presence

in Equation 4.1, and to a lesser extent, indirectly via its effect on the geothermal gradient.

Thirdly, by combining insights drawn from VS and VP data together with thermodynamic

models of geothermal structure, variations in crustal heat production can be constrained. This

stands in contrast to previous studies making use of steady-state geotherm modelling, which

have assumed constant composition (An et al., 2015; Haeger et al., 2022; Hazzard et al., 2023).

In addition, methods based on empirical comparison of seismic data between continents are

unable to account for differences in crustal composition between target and comparison sites

(Shapiro and Ritzwoller, 2004; Shen et al., 2020). Therefore, whilst their inferred qs uncertainty
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may implicitly capture variations in heat supply associated with crustal composition, their

estimates of qs itself will be agnostic to such variations.

4.3.6 Outstanding Challenges

Although the GHF modelling framework presented herein provides a powerful method to infer

GHF from seismological data, a number of outstanding challenges remain. Chief amongst them

is the inability to reliably infer temperature structure from VS at depths shallower than the

Moho. This issue has been mitigated in three ways: by assuming a temperature of 0 ◦C at

the crystalline basement, excising anomalous seismic data associated with crustal bleeding, and

fitting seismically inferred geotherms using thermodynamically self-consistent models of shal-

low thermal structure. However, given improved constraints on crustal temperature structure

(at vertical resolution of ∼ 25 km or higher), it would be possible to generate more reliable

predictions of surface geothermal gradient. Such constraints may also help in resolving relative

contributions to GHF derived from transient-state geotherms versus crustal heat production.

Pn-waves are a type of compressional wave guided along the mantle lid, providing sensitivity to

Moho temperature structure. Therefore, a high resolution, continental scale model of Antarctic

Pn-velocity (VPn) would be extremely valuable. Fortunately, this may be on the horizon, with

the recent development of a VPn model of central West Antarctica (Lucas et al., 2021). In gen-

eral, deployment of additional broadband seismic stations in Antarctica would help to improve

the accuracy and spatial resolution of velocity models used to infer geothermal structure.

Another challenge relates to the assumption of steady-state in the geotherm modelling pro-

cess. Whilst such an assumption is readily applicable in regions of unperturbed cratonic litho-

sphere, such as East Antarctica, it may not be in areas affected by recent rifting (ca. 60 Ma). In

the absence of well-constrained models of the spatiotemporal pattern of West Antarctic rifting,

it is currently unfeasible to adapt the modelling framework to incorporate transient geotherms.
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It may be possible to estimate GHF associated with a transient geotherm using a steady-state

geotherm, as long as the surface geothermal gradient can be appropriately modelled. However,

this is not ideal, and therefore in future an alternative solution may be sought. A potential

option is to avoid modelling the geotherms at all. Given accurate images of Earth’s crust and

mantle, one could estimate k(z = z0) and ∂T/∂z|z=z0 directly, and hence predict qs. For this

to be possible, self-consistent VS, VP and VPn models are required, with at least regional scale

resolution.

Thirdly, a parameterisation of geochemical data pertaining to the relationship between k0

and VP is relied upon, in order to estimate lateral variations in crustal thermal conductivity

(Jennings et al., 2019). This parameterisation inherently assumes that conductivity is sensitive

only to silica content. Further, it assumes that synthetic VP estimates from thermodynamic

calculations on a range of mineral assemblages are accurate, and match up to velocities pre-

dicted from real data (Behn and Kelemen, 2003). In reality, systematic errors in modelled VP

associated with the choice of regularisation or starting model will be propagated into system-

atic errors in predicted k0. In addition, artefacts in VP structure caused by data sparsity and

the ill-posed nature of the seismic inverse problem may cause us to improperly estimate k0 at

certain locations. Therefore, further validation of methods used to estimate k0(VP ) are needed.

Finally, the relative sparsity of Antarctic GHF estimates from gravity-driven probes and

boreholes presents a clear challenge in assessing the quality of geophysical predictions. A

significant expansion of this data set is needed to address the question: what is the most

reliable geophysical method for estimating continental GHF? In addition, multiple boreholes

at each field sampling region are needed, in order to properly account for localised variations

in GHF associated with geology, hydrothermal circulation, and topography (Burton-Johnson

et al., 2020). Promisingly, the Rapid Access Ice Drill (RAID) project seeks to address the lack

of local data by drilling down to the deepest portions of the Antarctic Ice Sheet (Goodge and
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Severinghaus, 2016). By utilising an autonomous design, providing independence from human

intervention, it should be possible to rapidly speed up data capture.

4.4 Conclusions

In this chapter, a novel modelling framework for estimating GHF from seismological data has

been presented. Building on the technique used to estimate GHF from VS-derived geotherms

in Chapter 3, Antarctic VP structure has been used to enhance constraint on shallow geother-

mal structure. Specifically, a parameterisation of k0(VP ) derived from laboratory conductivity

measurements, major element chemistry analyses, and thermodynamic calculations was used

to estimate spatial variations in crustal conductivity. In addition to k0, crustal heat production

h∗cu was treated as a free parameter within the modelling framework, and inverted for by eval-

uating the misfit between inferred and modelled geotherms. For the first time, GHF has been

estimated from seismic data while accounting for lateral variations in crustal composition. Un-

certainty in the predicted GHF structure has been estimated, by accounting for the underlying

uncertainty in k0 and h∗cu.

Crustal conductivity varies from 2.3Wm−1 K−1 to 2.9Wm−1 K−1 over Antarctica, with

values towards the upper limit of this distribution biased towards East Antarctica. On the

other hand, upper crustal heat production is estimated to be uniformly low in East Antarctica,

where on average h∗cu = 0.3± 0.3 µWm−3, as compared to West Antarctica, where h∗cu = 4.2±

1.5 µWm−3. In West Antarctica, the highest inferred heat production values (h∗cu ≥ 4 µWm−3)

should be treated with caution, since these values may be anomalously inflated as a result of the

assumption of a steady-state geotherm in regions affected by Cenozoic magmatism or rifting.

However, estimates of GHF are shown to be valid and interpretable over the whole Antarctic

continent. Variations in GHF from 20mWm−2 to 130mWm−2 are predicted, as compared to

the range of values predicted in Chapter 3, 40mWm−2 to 100mWm−2. The larger amplitude of
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GHF variations predicted in this chapter is likely due to the incorporation of laterally variable

crustal composition. Predicted GHF values are in better agreement with a compilation of

local data than previous studies, implying that crustal composition is an important component

of accurate predictions of Antarctic heat supply. The models of Antarctic conductivity, heat

production and GHF presented in this chapter provide improved constraints on Antarctic sub-

glacial geology and thermal conditions, critical for use in ice sheet modelling studies.
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Chapter 5

Thermomechanical Structure of

Australian Lithosphere and its

Influence on Natural Resource

Distributions

5.1 Introduction

In the previous chapters, methods for calculating physically self-consistent models of Antarc-

tica’s lithospheric and asthenospheric thermal structure were developed. The resultant high-

resolution, three-dimensional maps of viscosity and LAB depth can be used in glacial isostatic

adjustment simulations, while the newly derived method for estimating GHF can be integrated

into ice sheet models. However, the potential applications of these methods extend beyond

tackling problems directly related to ice sheet dynamics and sea level. Maps of thermodynamic

parameters, derived from tomographic velocity models, can be used to investigate lithospheric

structure in the context of a range of human-related issues. For example, the thickness of
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lithosphere influences the distribution of seismic and volcanic hazards (Ball et al., 2021; Craig

et al., 2011; Sloan et al., 2011). In addition, the transition between thick and thin lithosphere

on the edge of cratons was recently shown to be a powerful indicator of the likely location

of sediment-hosted base metal deposits (Hoggard et al., 2020). Such deposits are of critical

value to the global economy, due to the role that base metals (copper, lead, nickel and zinc)

play in advanced technologies and the transition to renewable energy. In 2017, approximately

£6.6 bn was spent in exploration for base metal deposits (The Economist, 2019). The work

presented in this chapter focuses on such deposits by developing accurate probabilistic models

of Australia’s lithospheric structure, to guide future mineral exploration efforts. First, the in-

verse calibration method developed in Chapter 2 is modified to incorporate the use of xenolith

thermobarometric data. This method is then applied to a tomographic velocity model of Aus-

tralia, and used to infer its lithospheric and asthenospheric thermal structure. Maps of LAB

depth and its uncertainty are rigorously quantified, based on a statistical ensemble of modelling

outputs. This result builds on the analogous deterministic prediction of Hoggard et al. (2020),

integrating new xenolith and xenocryst constraints, to provide the most up to date and reliable

lithospheric indicator of the potential location of valuable base metals. The maps generated

are of significant economic value. Indeed, the work presented in this chapter was completed as

part of a consultancy agreement with Geoscience Australia, via the Exploring for the Future

research program, which is dedicated to transforming understanding of Australian continental

geology and resource potential.
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5.2 Constructing Australian Palaeogeotherms from Xeno-

lith Thermobarometry Data

In oceanic settings, lithospheric temperature-pressure conditions are well constrained by con-

ductive cooling models. In Chapter 2, these models were used to empirically constrain the

relationship between VS and T resulting from oceanic plate cooling, using data from the oceans

surrounding Antarctica. By combining the oceanic plate VS–T constraint with three additional

data sets, the resulting calibration of the viscoelasticity parameters within Yamauchi and Takei

(2016) could be used to relate VS to thermodynamic variables beneath the Antarctic continent.

The Bayesian inversion framework used to perform the calibration, using the aforementioned

geophysical data sets, is flexible in the sense that it can be adapted to use any form of useful

information pertaining to the relationship between seismic observables (VS, Q
−1) and thermo-

dynamic parameters (T , P , η, ρ). Since regional tomographic velocity models of Australia have

limited resolution in the surrounding oceans, the oceanic plate VS–T relationship cannot be

applied to calibrate viscoelasticity parameters here. Instead, robust constraint on Australia’s

continental lithospheric structure, derived from mantle xenoliths and xenocrysts (hereafter,

simply xenoliths), will be used in the inversion procedure. Xenoliths are fragments of mantle

rock brought to the surface by volcanism. By exploiting chemical exchanges between con-

stituent minerals within a given xenolith, their pressure and temperature of equilibration can

be determined. This technique in geochemical analysis is referred to as xenolith thermobarome-

try. By combining multiple xenolith samples derived from the same locality, thermobarometric

information can be used to infer regional lithospheric thermal structure.

Here, an inventory of pressure-temperature data points derived from xenolith thermobarom-

etry, compiled by research collaborator Dr. Mark J. Hoggard, is applied to construct a set of

Australian palaeogeotherms. The data cover 61 individual localities. At each locality, the
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major and minor oxide concentrations for chrome diopsides (clinopyroxene) were obtained. In

the case of garnet-periodotite xenoliths, oxide concentrations for orthopyroxene and garnet

were also extracted where available. Quality checks were performed according to Ziberna et al.

(2016), in order to reduce measurement and lithological classification errors. To calculate equi-

librium temperature and pressure, two different thermobarometer pairings were used. The first

was applied for xenoliths where data pertaining to clinopyroxene, orthopyroxene and garnet

phases were all available. In this case, the thermometer of Taylor (1998) and the barometer of

(Nickel and Green, 1985) were used. The second pairing was applied for single-grain clinopy-

roxene data. For these samples, the thermometer of Nimis and Taylor (2000) was combined

with the recently developed barometer of Sudholz et al. (2021), which is more accurate at high

pressures than previous parameterisations. There are three main sources of uncertainty in the

use of xenolith thermobarometric data to infer mantle geothermal structure. First, uncertainty

in the oxide concentrations, which are measured by microprobe analysis. Mather et al. (2011)

demonstrate that for the three-phase thermobarometer, microprobe measurement uncertainty

introduces a temperature uncertainty of approximately ±30 ◦C, and depth uncertainty of ap-

proximately ±10 km at low temperature (T ≈ 700 ◦C), reducing to ±10 ◦C and ±3 km at high

temperature (T ≈ 1200 ◦C). Slightly larger uncertainties are introduced for the single-grain

clinopyroxene thermobarometer. However, since the temperature and pressure uncertainties are

positively correlated, they tend to shift P–T data points in a direction approximately parallel

to the geotherm (M.J. Hoggard, pers. comm.), minimising their impact. Therefore, microprobe

measurement uncertainty has a relatively small influence on the best-fitting palaeogeotherm.
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Table 5.1: Localities used to construct Australian palaeogeotherms (provided by M.J. Hoggard).
Inf. = age of eruption has been inferred by indirect means; N.T. = Northern Territory; N.S.W.
= New South Wales.

Locality Region Lon. Lat. Age (Ma) Age reference Analysis reference

Argyle Kimberley 128.389 -16.710 1257± 15
Olierook et al.

(2023)

Griffin et al.
(1999), Jaques and

Foley (2018),
Jaques et al.

(1989a,b, 1990),
Luguet et al.

(2009), Ramsay
(1992), Sobolev
et al. (1989),
Stachel et al.
(2018), and
Sudholz et al.

(2023a)

Argyle -
Bow Hill
(WA)

Kimberley 128.183 -16.680 815± 20
Pidgeon et al.

(1989)

Fielding and
Jaques (1986),
Griffin et al.

(1999), Ramsay
(1992), and
Sudholz et al.

(2023a)

Argyle -
Maude
Creek

Kimberley 127.768 -16.745 ca. 800 (Inf.)
Jaques et al.

(1986) and Sudholz
et al. (2023a)

Ashmore Kimberley 127.293 -14.234 ca. 800 (Inf.)
Jaques and

Milligan (2004)
Sudholz et al.

(2023a)

Bow Hill
(Tas)

Tasmania 147.219 -42.286 25
Sutherland and
Wellman (1986)

Ferguson and
Sheraton (1982)
and Sutherland
et al. (1984)

Brigooda Queensland 151.400 -26.200 18
Robertson et al.

(1985)
Griffin et al. (1987)

and Sas (1997)

Bullenmerri Victoria 143.104 -38.252 0 Griffin et al. (1984)

Griffin et al. (1988,
1984), Irving

(1974), Lu et al.
(2018, 2020), and

O’Reilly and
Griffin (1985); M.J.

Hoggard (pers.
comm.)

Bullenmerri
- Mount
Leura

Victoria 143.157 -38.240 Irving (1974)

Calwynyardah Kimberley 124.787 -18.000 21 ± 1
Phillips et al.

(2022)
Sudholz et al.

(2023a)

Calwynyardah
- Walgidee

Hill
Kimberley 124.875 -18.301 17± 1

Phillips et al.
(2022)

Hutchison (2018)
and Sudholz et al.

(2023a)

Continued on next page...
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Table 5.1 continued...

Locality Region Lon. Lat. Age (Ma) Age reference Analysis reference

Calwynyarah
- Laymans

Bore
Kimberley 124.837 -17.997 ca. 21 (Inf.)

Sudholz et al.
(2023a)

Cone 32 Queensland 144.900 -18.000 ca. 0 (Inf.)
Griffin and

McDougall (1975)

Kay and Kay
(1983) and Stolz

(1987)

Cone 32 -
Bachelor
Crater

Queensland 144.200 -19.400 ca. 1 (Inf.)
Kay and Kay

(1983)

Dolo Hill Curnamona 142.804 -31.669
M.J. Hoggard
(pers. comm.)

El Alamein Gawler 137.733 -32.583
Gaul et al. (2003)
and Sudholz et al.

(2022)

Ellendale Kimberley 124.859 -17.564 22 ± 1
Phillips et al.

(2022)

Griffin et al.
(1999), Jaques and

Foley (2018),
Jaques et al. (1984,

1989a, 1994),
Ramsay (1992),

and Sudholz et al.
(2023a)

Ellendale -
Water
Reserve

Kimberley 124.815 -17.634 21± 1 Jaques et al. (1984)
Sudholz et al.

(2023a)

Jewill Yilgarn 122.085 -25.714 1324± 4
Phillips et al.

(1997)
M.J. Hoggard
(pers. comm.)

Jugiong
East

N.S.W.
148.268 -34.982

Ferguson and
Sheraton (1982)

Jugiong -
Eucumbene-

Tumut

East
N.S.W.

148.500 -35.800 Irving (1974)

Kayrunnera Curnamona 142.543 -30.670 264± 18
Gleadow and

Edwards (1978)

Sudholz et al.
(2022); M.J.

Hoggard (pers.
comm.)

Mad Gap
Yard

Kimberley 127.242 -17.820 842± 8
Downes et al.

(2023)

Downes et al.
(2023) and Sudholz

et al. (2023a)

Merlin N.T. 136.340 -16.850 380± 2 Hell et al. (2003)

Hutchison (2011)
and Lee et al.
(1997); M.J.

Hoggard (pers.
comm.)

Monaro
East

N.S.W.
149.160 -36.640 45± 11 Taylor et al. (1990) Roach (2004)

Continued on next page...
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Table 5.1 continued...

Locality Region Lon. Lat. Age (Ma) Age reference Analysis reference

Monaro -
Delegate

East
N.S.W.

148.779 -36.838 170± 5
Lovering and

Richards (1964)

Griffin and
O’Reilly (1986),
Irving (1974),
Lovering and

Richards (1964),
Lovering and

White (1969), and
Ramsay (1992)

Mount
Anakie

Victoria 144.266 -37.887
Irving (1974) and
Wass and Hollis

(1983)

Mount Hope Gawler 135.200 -33.700 191± 17
Cooper and Morris

(2012)

Gaul et al. (2003)
and Sudholz et al.

(2022)

Orroroo Gawler 138.600 -32.542 170± 2 Black et al. (1993)

Gaul et al. (2003),
Scott Smith et al.

(1984), and
Sudholz et al.

(2022)

Ruby Hill
East

N.S.W.
150.592 -30.035 167 Sutherland (1996)

Irving (1974) and
Lovering and

Richards (1964);
M.J. Hoggard
(pers. comm.)

Sapphire
Hill

Queensland 144.400 -19.300 ca. 1 (Inf.)
Kay and Kay

(1983)

Sheep
Station
Knob

Queensland 147.600 -23.500 27 Griffin et al. (1987) Griffin et al. (1987)

Table Cape Tasmania 145.725 -40.959
M.J. Hoggard
(pers. comm.)

Terowie -
Calcutteroo

Gawler 139.200 -33.120 184± 2
Tappert et al.

(2019)
Sudholz et al.

(2022)

Terowie -
Monk Hill

Gawler 139.337 -33.104 190± 2
Tappert et al.

(2011)

Sudholz et al.
(2022) and Tappert

et al. (2011)

Terowie -
Mungibbie

Gawler 138.965 -33.276
Sudholz et al.

(2022)

Terowie -
Pitcairn

Gawler 139.223 -32.963 186± 7
Tappert et al.

(2019)
Sudholz et al.

(2022)

Timber
Creek

N.T. 130.467 -15.743 179± 2
Belousova et al.

(2001)
Kolff (2010)

Wandagee
Carnarvon
Basin

114.588 -23.978 161± 5
Pidgeon et al.

(1989)
Hoggard et al.

(2020)

Webb Arunta 128.167 -22.851 806± 22
Sudholz et al.

(2023b)
Sudholz et al.

(2023b)

Continued on next page...
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Table 5.1 continued...

Locality Region Lon. Lat. Age (Ma) Age reference Analysis reference

West
Leonora

Yilgarn 121.190 -29.494 2061± 17
Fiorentini et al.

(2020)

Hutchison (2018);
M.J. Hoggard
(pers. comm.)

On the other hand, uncertainty in the application of the thermobarometers themselves is a

more significant source of uncertainty (M.J. Hoggard, pers. comm.). Each thermometer and

barometer is constructed on the basis of experimental data pertaining to synthetic rock sam-

ples, subjected to a specific range of laboratory pressure and temperature conditions. Real

xenolith samples may have compositions, or have equilibrated at pressures and temperatures,

which do not lie within the ranges tested in the laboratory. To partially mitigate this issue,

compositional screening protocols are applied, and results that fall outside of the appropriate

pressure and temperature ranges are discarded. However, significant uncertainties within the

official calibration ranges of thermobarometers remain. For the three-phase thermobarome-

ter pairing, this corresponds to a temperature uncertainty of approximately ±50 ◦C, and a

depth uncertainty of ±15 km (Nimis and Grütter, 2010). For the diopside thermobarometer,

temperature and depth uncertainties of ±30 ◦C and 7% are reported, respectively (Sudholz

et al., 2021). These uncertainties have no obvious correlation, and therefore impact inferences

of regional palaeogeothermal structure more significantly than oxide concentration uncertainty.

Finally, an additional source of uncertainty is introduced via the use of P–T data points

derived from xenolith thermobarometry to infer present-day geothermal structure. The xenolith

P–T data points are relevant to the time at which equilibration occurred, which is anywhere

between 0 and 2061 Ma (Table 5.1). Therefore, an implicit assumption is being made, that

modern mantle thermal conditions at the locality of interest are equivalent to those at the time

of equilibration. Furthermore, where multiple xenoliths are combined to construct a single

geotherm relevant to a particular locality, this assumption applies to all equilibration times.

In locations affected by transient geothermal evolution, this assumption is unlikely to be valid.
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Therefore, it will not always be possible to obtain a reasonable fit between inferences of the

present-day geotherm derived from tomographic velocities and xenolith thermobarometry data.

This issue is explored in more detail in the next section, regarding the adaptation of the inverse

calibration procedure to incorporate P–T information derived from xenolith thermobarometry.

Having applied the thermobarometers to the compiled xenolith data, M.J. Hoggard in-

spected the resulting P–T data points and removed any obvious anomalies. Then, localities

in close proximity to one another were examined, and merged into a single locality where con-

sistent. Localities for which only one data point was available, or the derived P–T structure

was physically implausible were removed from the data set. The latter phenomenon may be

related to thermal or chemical alteration of xenolith samples after their emplacement, or mea-

surement errors (M.J. Hoggard, pers. comm.). Ultimately, these steps resulted in a set of 28

localities for which high quality P–T data was available (see Table 5.1). To construct a best-

fitting palaeogeotherm at each locality, the approach used to model GHF in Chapter 3, and

again in Chapter 4, was applied. This involves solving the one-dimensional conductive heat

flow equation, and optimising the thickness of the mechanical boundary layer, in order to fit

a steady-state geothermal profile to the P–T data points. The temperature-dependent lattice

thermal conductivity parameterisation of Whittington et al. (2009) was used within continen-

tal crust, and the temperature- and pressure-dependent parameterisation of Grose and Afonso,

2013 was used in the mantle. In both domains radiative thermal conductivity is included using

the parameterisation of Grose and Afonso, 2013, assuming a mean grain size of 1 mm. Bulk

crustal radiogenic heat production was set to 0.4 µWm−3, mantle potential temperature to

1330 ◦C, and kinematic viscosity to 2 × 1016 m2 s−1. Crustal thickness was determined based

on regional variations in the Moho depth model AusMoho (Kennett et al., 2011), resulting in

a thickness of 30 km for localities in the Tasmanides (eastern Australia), and 40 km elsewhere.

The resulting set of 28 Australian palaeogeotherms are shown in Figure 5.1 and 5.2. They im-
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Figure 5.1: Australian palaeogeotherms (1 of 2). Steady-state geotherms (black solid lines)
are fitted to xenolith P–T constraints derived from thermobarometry (black circles). Crust
demarcated by grey shaded region. Name of locality (and number of P–T constraints, N)
shown in panel inset.
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Figure 5.2: Australian palaeogeotherms (2 of 2). Format follows previous figure.
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ply a large range of LAB depths over the Australian continent, e.g. from ∼ 60 km at Cone 32

(eastern Australia) to ∼ 200 km at Ellendale (Kimberley Craton, northwestern Australia), as

estimated by the depth to the 1200 ◦C isotherm. In terms of palaeogeotherm reliability, one

would expect this to be positively correlated with both the number of P–T constraints, and

the range of depths covered by the constraints. A handful of localities (Argyle, Calwynyardah,

El Alamein, Ellendale, Kayrunnera, Merlin, Mount Hope, Terowie and Webb) offer more than

50 P–T constraints. Of these, six localities (Argyle, Calwynyardah, Ellendale, Merlin, Mount

Hope and Terowie) have P–T data covering a depth range of at least 100 km. Meanwhile,

several sites offer less than 10 P–T constraints (Bow Hill, Brigooda, Cone 32, Mad Gap Yard,

Monaro, Mount Anakie, Orroroo, Ruby Hill, Sapphire Hill, Sheep Station Knob, Table Cape

and Wandagee), covering depth ranges anywhere between 0 km (Ruby Hill, 2 P–T constraints)

and 108 km (Mad Gap Yard, 9 P–T constraints). As with the issue of palaeogeotherm relevance

to modern lithospheric conditions, palaeogeotherm reliability will be dealt with as part of the

viscoelasticity calibration framework.

5.3 Adapting the Bayesian Modelling Framework to In-

corporate Palaeogeotherms

Having obtained a set of Australian palaeogeotherms, it is necessary to adapt the Bayesian

modelling framework outlined in Chapter 2 used to calibrate viscoelasticity parameterisations,

in order to incorporate this data type. At each locality, predictions of temperature (T ) derived

from shear-wave velocity (VS) are compared to temperatures from the corresponding best-fitting

palaeogeotherm. VS information was obtained from the Rayleigh wave travel time tomography

model FR12 (Fishwick and Rawlinson, 2012). Although FR12 is not the most recent tomo-

graphic model of Australia, it remains one of the most reliable, as shown by its compatibility
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with xenolith-derived temperatures in Hoggard et al. (2020). This is likely due to the use of high

quality input data, and manual quality control of waveforms used in the inversion procedure.

In constructing the palaeogeotherm inversion constraint, VS from FR12 was matched to T from

the constructed palaeogeotherm at each locality using a 25 km depth interval, consistent with

the approximate vertical resolution of the tomographic velocity model. The shallowest depth

sampled at each locality, ztop ≥ 50 km, was selected to be half the LAB depth or the shallowest

point beneath the Moho, whichever was deeper. The deepest depth, zbottom ≤ 350 km, was

chosen to coincide with the base of the thermal boundary layer, as estimated via the geotherm

fitting procedure outlined in Section 5.2.

To integrate sensitivity of the viscoelasticity model parameters to the palaeogeotherm data

into the inversion procedure, a likelihood function is required. For consistency with the ap-

proach used to model the four geophysical constraints presented in Chapter 2, a Gaussian

distribution was used to represent the likelihood of each geotherm, according to Equation 2.41.

The likelihood pertaining to the complete set of palaeogeotherms could then be calculated by

multiplying together the individual palaeogeotherm likelihood densities. A unique hyperpa-

rameter was applied to each individual locality. By doing so, palaeogeotherms which are not

representative of modern lithospheric conditions could be objectively downweighted in the in-

version procedure. For example, suppose that at one of the localities used, a mantle plume

made lithospheric conditions significantly hotter when xenoliths were emplaced than they are

at present. Using a sensible set of viscoelasticity model parameters, it will not be possible to

accurately reconstruct the xenolith-inferred geotherm from VS data. The VS-inferred temper-

ature will consistently underestimate palaeogeotherm temperatures. However, by treating the

average uncertainty assigned to each palaeogeotherm as a free parameter within the model, the

unreliability of data at this particular locality can be iteratively learnt by the inversion. This

approach also aids mitigation of other sources of uncertainty in the xenolith-derived geotherm
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Figure 5.3: Tomographic shear-wave velocity model FR12, shown at 75 km, 150 km, 225 km
and 300 km depth (panels a-d, respectively). Eastern Australia is characterised by slower than
average VS down to at least 225 km depth, consistent with thinner lithosphere. By contrast,
fast velocities across northern, western and southern Australia are consistent with the presence
of cratonic lithosphere.

154



constraints, such as analytical error. Therefore, the inversion procedure is progressively tuned

to establish which data sets it should rely most on for optimising model parameters.

In combination with the palaeogeotherm data, a mantle adiabat was used to constrain as-

thenospheric temperatures. A mantle potential temperature of TP = 1300 ◦C was assumed, in

accordance with the global average (Richards et al., 2018). The adiabat data constraint was

constructed in the same way as presented in Chapter 2, by calculating spatially averaged VS be-

neath Australia from FR12 (at 25 km depth intervals between 225 km and 350 km), and tying

these values to the corresponding adiabatic temperature at each depth slice. The 28 palaeo-

geotherm data sets and single adiabat constraint constitute the complete set of geophysical

data used in the inversion. For each constraint, the data and corresponding model prediction

were compared in temperature space (as opposed to VS space, e.g., Chapter 2). This was found

to improve the stability of the inversion procedure, and therefore aid convergence on optimal

regions of model space. The prior distribution for each of the viscoelasticity parameters was

assumed to be the same as in Chapter 2, as were all other aspects of the inversion. Full details

of the inversion code, and how it can be accessed open-source, are provided in Appendix A.

5.4 Inversion Performance

Applying the inversion algorithm as specified in Section 5.3 produces the viscoelasticity param-

eters shown in Table 5.2. The posterior parameters each lie within 1 standard deviation of their

respective prior distributions, with the exception of ∂µ
∂T

and ∂µ
∂P

. However, as noted in Chapter 2,

these two parameters have a strong negative trade-off with each other. In comparison with the

best-fitting parameters obtained in Hoggard et al. (2020), MAP values obtained in this study

for µ0, EA, VA and ∂TS

∂z
appear much more reasonable with respect to published experimental

constraints. This encouraging result suggests that the Bayesian inverse approach allows a more

thorough exploration of the parameter space and is better able to escape local minima in the

155



misfit space (i.e., maxima in probability density space). Credible intervals highlighting the

model fit to each of the 29 geophysical data constraints (28 palaeogeotherms, 1 adiabat) are

shown in Figure 5.4, 5.5 and 5.6. The following summary statistics, pertaining to each data set,

are shown in Table 5.3. First, sT is the assumed temperature uncertainty on each data point

within the data set of interest. Second, Ê (log10 σ) is the mean hyperparameter value obtained

for each data set, reported as a base-10 logarithmic value. This value is an average calculated

over the posterior ensemble of models. Third, the scaled error s′T is found according to

s′T = 10Ê(log10 σ) sT . (5.1)

The scaled error is the uncertainty on each data set implied by the average hyperparameter

value. Fourth, Ê (RMS) is the mean RMS misfit between VS-inferred and data-constrained

temperature. As for the mean hyperparameter, the mean RMS misfit is an average over the

posterior ensemble. In Table 5.3, close agreement is observed between the scaled error and the

mean RMS misfit. This result is indicative of desirable hyperparameter behaviour. Data sets

with a larger average RMS misfit are associated with higher average hyperparameter values,

and therefore lower weights in the likelihood function. This ensures that data sets providing

sensible data-model misfits are prioritised in the parameter space exploration, increasing the

likelihood that optimal parameter combinations are found.

Visual inspection of Figure 5.4 indicates a high level of agreement between the adiabat

constraint and the posterior ensemble of VS-inferred asthenospheric temperatures. This is cor-

roborated by an average misfit of Ê(RMS) = 23 ◦C. Eight localities provide palaeogeotherm

data in close alignment with the posterior ensemble of local VS-inferred temperatures, such

that Ê(RMS) ≤ 100 ◦C. These are Bullenmerri, Calwynyardah, El Alamein, Ellendale, Mount

Hope, Orroroo and Wandagee. Of the remaining 20 localities, 12 exhibit data-model agreement

in the range 100 < Ê(RMS) ≤ 200 ◦C. The remaining 8 localities are least reliable, exhibiting
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Model parameter i Prior µi Prior si Posterior µi Posterior si MAP xi (Hoggard et al., 2020)

µ0 (GPa) 81 8 77.5 0.8 78.0 69.0
∂µ/∂T (GPaK−1) −0.014 0.003 −0.0200 0.0010 −0.0207 −0.0117
∂µ/∂P (unitless) 1.6 0.2 2.72 0.12 2.73 2.83
log10 ηr (Pa s) 22 3 23.1 1.8 24.2 22.11
EA (kJmol−1) 400 200 535 201 485 963
VA (cm3mol−1) 6 4 4.04 3.8 4.69 0.00
∂TS/∂z (K km−1) 2.25 2.25 1.17 1.02 0.63 4.50

Table 5.2: Inverted viscoelasticity parameters. Prior µi and si represent the mean and standard
deviation of the Gaussian prior distribution for each parameter. Posterior µi and si represent the
mean and standard deviation of the posterior distribution for each parameter. MAP represents
the maximum a posteriori model. xi represents parameters obtained for FR12 in Hoggard et al.
(2020).

Figure 5.4: Fit of inverted viscoelasticity parameters to adiabat and Orroroo palaeogeotherm.
Adiabat temperature data (black circles) compared to average asthenospheric VS-inferred tem-
perature (dark shaded region=50% credible interval, pale shaded region=99% credible interval)
in panel a. Palaeogeotherm temperature data (black circles) compared to local VS-inferred tem-
perature (shading follows panel a) in panel b. RMS values refer to Ê(RMS), i.e., a mean over
the posterior ensemble.
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Data set sT (◦C) Ê (log10 σ) s′T (◦C) Ê (RMS) (◦C)

Adiabat 100 -0.608 24 23
Argyle 100 0.292 195 175
Ashmore 100 0.079 119 108

Bow Hill (Tas) 100 0.240 173 146
Brigooda 100 0.238 172 147

Bullenmerri 100 -0.206 62 45
Calwynyardah 100 0.010 102 89

Cone 32 100 0.299 199 165
Dolo Hill 100 0.447 279 238
El Alamein 100 -0.933 11 10
Ellendale 100 -0.190 64 58
Jewill 100 0.537 344 324
Jugiong 100 0.442 276 238

Kayrunnera 100 0.366 232 210
Mad Gap Yard 100 0.652 448 425

Merlin 100 0.178 150 142
Monaro 100 0.189 154 125

Mount Anakie 100 0.090 123 100
Mount Hope 100 0.025 105 92

Orroroo 100 -0.828 14 12
Ruby Hill 100 0.305 201 165

Sapphire Hill 100 0.357 227 144
Sheep Station Knob 100 0.221 166 127

Table Cape 100 0.213 163 123
Terowie 100 0.299 199 183

Timber Creek 100 0.624 420 391
Wandagee 100 -0.242 57 51
Webb 100 0.730 537 498

West Leonora 100 0.630 426 391

Table 5.3: Inversion data fit summary statistics. Data set refers to each of the 29 constraints
used in the inversion. sT is the assumed temperature uncertainty on each data point within
the data set of interest. Ê (log10 σ) is the average hyperparameter value obtained for each data
set, represented on a base-10 logarithmic scale. The scaled error s′T is an implied uncertainty
on each of the data sets. Ê (RMS) is the root-mean-square misfit between data and model for
each data set, reported as an average over the posterior distribution.
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Figure 5.5: Fit of inverted viscoelasticity parameters to Australian palaeogeotherms (1 of 2).
Palaeogeotherm temperature data (black circles) compared to local VS-inferred temperature
(dark shaded region=50% credible interval, pale shaded region=99% credible interval). Original
xenolith P–T constraints derived from thermobarometry (grey circles). Crust demarcated by
grey shaded region. Name of locality shown in panel inset.
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Figure 5.6: Fit of inverted viscoelasticity parameters to Australian palaeogeotherms (2 of 2).
Format follows previous figure.
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misfits Ê(RMS) > 200 ◦C, namely: Dolo Hill, Jewill, Jugiong, Kayrunnera, Mad Gap Yard,

Timber Creek, Webb and West Leonora. These localities may be influenced by a range of is-

sues affecting data-model agreement. For example: evolution of lithospheric thermal conditions

between xenolith emplacement and present-day, presence of unmodelled compositional anoma-

lies or radial anisotropy changes influencing VS, or measurement and/or human error during

geochemical analysis.

5.5 Probabilistic Assessment of Australian Lithosphere-

Asthenosphere Boundary Depth

To infer LAB depth at each location within the chosen tomographic velocity model, FR12, a

random subset of 1, 000 post burn-in viscoelasticity models is used to generate an ensemble of

three-dimensional temperature structures. This follows the procedure laid out in Section 3.2.2.

As previously, the laterally varying geothermal profiles are interpolated to a 1 km depth interval.

Prior to interpolation, anomalous temperatures associated with downward bleeding of crustal

velocities in the underlying tomography are removed by identifying spurious reductions of the

geothermal gradient in the shallow mantle, and excising predicted temperatures above these

loci. In all cases, a temperature of 0 ◦C is enforced at the surface, which is estimated using

SRTM15+ topographic grids (Tozer et al., 2019). Following interpolation, the depth at which

the resulting profile intersects the 1200 ◦C is extracted, which is used as a proxy for LAB depth

(Burgos et al., 2014; Richards et al., 2018). In the following, the results of applying the LAB

depth inference procedure are shown, and discussed in the context of sediment-hosted metal

distribution in Australia.
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Figure 5.7: Australian LAB depth inferred from FR12 VS, constrained using xenolith-derived
palaeogeotherm data. Median (panel a) and median absolute deviation (panel b). Distri-
bution of sediment-hosted (panel a; circles=clastic-dominated lead-zinc, triangles=Mississippi
Valley-type lead-zinc), squares=sedimentary copper, stars=copper from iron oxide-copper-gold
ore) metal deposits appears concentrated around the 195 km LAB depth contour (panel a;
black dashed line). Location of 28 palaeogeotherms used to constrain inversion (panel a; black
crosshairs).
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Figure 5.8: Investigating the relationship between sediment-hosted base metal deposit location
and the transition from thick to thin lithosphere in Australia. Cumulative distance between
LAB depth contour and each Mt of metal, as a function of chosen contour depth (panel a; black
circles/line=median, dark shaded region=50% credible interval, pale shaded region=99% cred-
ible interval). Percentage of total deposit mass found within each distance of the 195 km LAB
depth contour (panel b; see panel inset for deposit types in which Cu-sed=sedimentary cop-
per, Cu-IOCG=copper from iron oxide-copper-gold ore, PbZn-CD=clastic-dominated lead-zinc,
PbZn-MVT=Mississipi Valley-type lead-zinc). Synthetic relationship for random distribution
of deposit locations (grey line=median, dark shaded region=50% credible interval, pale shaded
region=99% credible interval), where distribution of synthetic deposit masses is equivalent to
that observed in real data.
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5.5.1 Results and Discussion

By summarising the distribution of values at each location within the spatial footprint of FR12,

it is possible to arrive at an ensemble prediction of Australian LAB depth and its uncertainty

(Figure 5.7). Here, the median and median absolute deviation were used, as opposed to the

mean and standard deviation. The former two measures were found to significantly reduce

the contribution of a small number of anomalous LAB depth predictions, which were present

at a handful of locations where the VS-inferred temperatures are prone to spurious values at

shallow depth, despite the geotherm conditioning procedure used to mitigate this issue. Median

LAB depth varies from 40 km around the perimeter of eastern Australia, up to 270 km at the

Kimberley Craton of northwestern Australia. On average, uncertainty in Australian LAB depth

arising due to uncertainty in the viscoelasticity model parameters is ∼ 2 km, however this value

reaches up to 8 km in certain locations.

By overlaying the location of Australian sediment-hosted base metal deposits on top of the

median LAB depth prediction (Figure 5.7a), the relationship between lithospheric structure and

natural resource distribution can be investigated. Four types of deposit were analysed: sedi-

mentary copper (Cu-sed), copper derived from iron oxide-copper-gold ore (Cu-IOCG), clastic-

dominated lead-zinc (PbZn-CD), and Mississipi Valley-type lead-zinc (PbZn-MVT). Australian

deposits containing at least 0.1 Mt of metal were considered. The resulting inventory consisted

of 10 Cu-sed deposits (total mass m = 11.3 Mt), 25 Cu-IOCG deposits (m = 100.1 Mt), 15

PbZn-CD deposits (m = 175.9 Mt) and 10 PbZn-MVT deposits (m = 11.5 Mt). In agreement

with Hoggard et al. (2020), there is a close link between the location of base metal deposits and

the edge of cratonic lithosphere. The transition between thick and thin lithosphere provides

optimal conditions for the generation of sediment hosted base metal deposits for a number of

reasons. Firstly, for a given stretching factor, rifting cratonic lithosphere produces thicker syn-

rift sediment piles than other extensional settings, owing to increased buoyancy as a result of
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chemical depletion (Hoggard et al., 2020). These larger volumes of source and sink lithologies

serve to increase the potential size of the eventual mineral deposit. Secondly, since cratonic

lithosphere is thicker than standard continental lithosphere, it is associated with lower basal

heat flow during rifting. This means that greater amounts of lithospheric thinning can occur,

producing thicker sediment piles, while still maintaining brine temperatures below the ∼ 250◦C

threshold necessary for metal precipitation reactions to remain effective (Hoggard et al., 2020;

Huston et al., 2016). Finally, the rheological contrasts present at cratonic edges help to focus

strain associated with successive cycles of tectonic extension and contraction, concentrating the

distribution of source and sink lithologies and localising faults that enable mineralising fluids

to be transported between them (Gibson et al., 2016; Sloan et al., 2011). Furthermore, the

development of deeper, longer and more widely spaced faults during rifting of cratonic litho-

sphere leads to greater interaction between hydrothermal fluid and sedimentary rock (Biggs

et al., 2010). These faults also tend to remain active for longer than in standard continental

lithosphere, allowing more time for mineralisation to occur. These factors combine to encourage

the development of giant deposits, and can explain why no sediment-hosted deposits of this

size are found in non-cratonic rift systems (Hoggard et al., 2020). To quantitatively assess the

relationship between the location of base metal deposits and the edge of cratonic lithosphere,

a series of LAB depth contours between 160 km to 220 km were selected on 5 km intervals.

For each contour, the cumulative mass-weighted distance to each base metal deposit Z was

determined. Each contour-deposit distance, ζ, was calculated using the shortest great-circle

path connecting the contour to the deposit location, such that

Z =
∑︂

i

miζi, (5.2)

where i is an integer index referring to each deposit in turn, and mi is the mass of metal in each

deposit. Carrying out this procedure for each LAB depth map in the posterior ensemble of 1, 000
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viscoelasticity models, a distribution of Z values was obtained for each contour, which could

be summarised in terms of a median and a set of credible intervals (Figure 5.8a). Inspecting

the results, it can be seen that the 195 km LAB depth contour is most strongly correlated with

the location of base metal deposits. Indeed, for the median LAB depth model, all deposits of

mass in excess of 10 Mt are located within 105 km of this contour. The 195 km contour is

25 km deeper than that obtained in Hoggard et al. (2020), whose analysis was based on global

LAB depths and deposit locations. Therefore, it is possible that the mechanism responsible

for deposit generation may regionally operate at greater depths than indicated by the globally

best-fitting value. Alternatively, the discrepancy could be caused by differences in LAB depth

inferred by different tomographic models.

Looking more closely at the optimal 195 km contour, a cumulative distribution function

(CDF) was used to investigate the proportion of total deposit mass found within a given

distance of this contour. It was found that 78% of all deposit mass is located within 100 km of

the 195 km contour, and 97% within 200 km (Figure 5.8b, black line). To gauge the statistical

significance of this trend, it was compared with an analogous CDF obtained using a synthetic

data set, within which all deposit locations were generated randomly (Hoggard et al., 2020).

The synthetic data set was equivalent to the real data in terms of size (60 deposits) and mass

distribution. Randomised locations were found by sampling two parameters, u and v, from a

uniform random distribution on (0, 1), and projecting onto a spherical coordinate system using

θ = cos−1 (2v − 1) , (5.3)

and

φ = 2πu, (5.4)

where θ and φ become geodetic coordinates by conversion into degrees. Equation 5.3 and 5.4
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derive from the differential solid angle

dΩ = sin θ dθ dφ, (5.5)

= d (cos θ) dφ, (5.6)

which is linked to differential surface area on a sphere of radius r by dA = r2dΩ. Therefore (to

within the accuracy of the assumption that Earth is spherical), this method ensures that the

expected sampling density within a region of unit area is constant over Earth’s surface. Pairs

of u and v were drawn, and converted into geodetic coordinates, until 60 locations pertaining

to onshore Australia had been drawn. Each deposit location was assigned a mass drawn from

the real deposit mass distribution. A CDF was then made by obtaining the shortest distance

between each deposit and the 195 km LAB depth contour, and calculating cumulative deposit

mass as a function of distance away from this contour. Due to the inherent stochasticity of

the randomised deposit data, 1, 000 synthetic CDFs were generated (each based on a unique

set of 60 random deposit locations). This ensemble of CDFs was summarised by binning as a

function of distance from the 195 km LAB depth contour, using a bin width of 25 km. Within

each bin, a median value (and set of 50% and 99% credible intervals) for the cumulative mass

proportion were calculated. By analysing the resultant binned CDF, it was found that only 23%

of total deposit mass was found within 100 km, and 44% within 200 km (Figure 5.8b, grey line).

This corresponds to 55 and 53 percentage points less than the real deposit data, respectively.

Furthermore, for each CDF within the synthetic ensemble, a two-sample Kolmogorov-Smirnov

test was applied to assess the likelihood that the real deposit data is drawn from the same

underlying distribution (i.e., uniform random) as the synthetic data. The Kolmogorov-Smirnov

test is applied by calculating the maximum absolute difference in probabilities between the two

CDFs, known as a D-value. The D-value was found to vary between 0.26 and 0.96 over the

ensemble of synthetic data sets, with a mean value (and standard deviation) of 0.71 ± 0.17.

167



The mean D-value corresponds to a less than 1 in 1018 probability that the real deposit data is

drawn from a set of uniform random locations across onshore Australia, showing that the LAB

depth-deposit relationship obtained for the real data is of extremely high statistical significance.

Separating out the CDF for each deposit type, it can be seen that the PbZn-MVT appear least

correlated with the 195 km LAB depth contour of the four deposit types. This is to be expected

given that, unlike the other deposit types, many MVT deposits are associated with tectonic

compression, potentially resulting in substantial topographically driven lateral transport of

mineralising fluids away from intracratonic basin margins (Hoggard et al., 2020). On the other

hand, the 195 km LAB depth contour appears to be a very powerful indicator for Cu-sed,

Cu-IOCG and PbZn-CD deposit location.

5.6 Conclusions

In this chapter, a methodology for the use of xenolith-derived palaeogeotherms to calibrate

inferences of continental thermomechanical structure from VS data has been developed. An

expanded inventory of geochemical analyses on Australian xenoliths, obtained from research

collaborator M.J. Hoggard, has been used as the basis for applying this methodology to un-

derstand Australian lithospheric architecture. Building on the Bayesian approach set out in

Chapter 2, hyperparameters have been used to objectively up- and down-weight palaeogeotherm

data constraints within the inversion procedure, based upon their individual reliability. It was

found that 28 palaeogeotherms, combined with an adiabat pertaining to asthenospheric thermal

structure, were sufficient to numerically characterise the posterior distribution of viscoelasticity

model parameters.

Using the 1200 ◦C isotherm as a proxy for LAB depth, an ensemble of posterior models

were used to obtain estimates of laterally varying LAB depth in Australia from FR12 VS

information. Summarising these estimates using a median, and median absolute deviation, it
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was shown that LAB depth varies between 40 km and 270 km in this region, with a typical

uncertainty due to variations in viscoelasticity parameters of only ∼ 2 km. A clear relationship

between the 195 km LAB depth contour and the location of natural deposits containing in

excess of 0.1 Mt of base metal was observed. The depth of this contour is 25 km deeper than

estimated based on a global analysis, a discrepancy which may be caused by regional geology.

78% of metal mass associated with such deposits was found to be located within 100 km of this

LAB depth contour, and 97% within 200 km. This relationship was proven to be statistically

significant by comparison with a synthetic data set, of equal size and mass distribution to

the real data, but with randomised locations over Australia. For the randomised synthetic

data, only 23% of mass is found within 100 km of the LAB depth contour, and only 44%

within 200 km. The location of Mississipi Valley-type lead-zinc deposits was shown to be the

least strongly connected to the LAB depth contour out of all deposit types. However, the

connection still appears much stronger than expected based on randomised deposit locations.

All three remaining deposit types (sedimentary copper, copper from iron oxide-copper-gold

ore, and clastic-dominated lead-zinc) from the data set appear very strongly correlated with

the 195 km LAB depth contour. By exploiting the tendency for very large deposits to exist in

close proximity to this contour, companies involved in mineral exploration can greatly reduce

their search space. This increase in exploration efficiency is likely to play an important role in

boosting the supply of key minerals that are needed in the transition to renewable energy.
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Chapter 6

Relationships Between Transient

Rheology, Ice Sheet Stability, and Sea

Level

6.1 Introduction

Glacial isostatic adjustment (GIA) represents the rotational, gravitational and viscoelastic re-

sponse of the Earth to changes in the distribution of ice and water over its surface. GIA is

an important physical process to model due to its influence on our understanding of Earth’s

cryosphere, and the climate system more widely. For example, palaeo sea level records cor-

rected for GIA-derived vertical displacement can be used to infer past global mean sea level,

which combined with records of past climate are indicative of ice sheet-climate sensitivity. In

the present day, estimates of ice sheet mass balance (i.e., the net balance of mass gain and loss

of an ice sheet, measured in Gt/yr) derived from satellite gravimetry data require correcting

for rates of solid Earth deformation in response to Last Glacial Maximum (ca. 21 ka) to present

deglaciation. Furthermore, future relative sea level changes depend upon the influence of hydro-
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logical mass redistribution on the shape of the solid Earth, its gravitational field, and its state

of rotation. The extent to which numerical models of GIA are able to reconstruct or predict

spatiotemporal patterns of deformation to Earth’s surface, gravitational field, and rotational

state, is dependent on how accurately they can represent Earth’s mechanical behaviour.

Typically, Earth is assumed to act as an elastic or Maxwell viscoelastic body, depending

on the timescale of the surface load redistribution under consideration (Watts et al., 2013).

If Earth’s structure can be described by an average stiffness µr ≈ 1011 Pa and viscosity

ηr ≈ 5×1021 Pa s, the Maxwell relaxation timescale τM ≈ 1, 000 years indicates an approximate

transition point between these two modelling assumptions. Accounting for lateral variations in

viscosity η = η(r, θ, φ), the relaxation timescale relevant to a given region of interest will be

locally modified by τ ′M = τM
η
ηr
. In the case of relatively rapid (τ ≪ τ ′M years) deglaciation

signals, the assumption of an elastically deforming Earth is usually made, since the strain con-

tribution from viscous deformation is expected to be negligible. For example, Meltwater Pulse

1A (14,650 years ago) took place between Last Glacial Maximum and present, consisting of a

period of rapid deglaciation lasting around 500 years. So-called “fingerprinting” studies seek to

break down deglaciation events such as Meltwater Pulse 1A in terms of the relative contribution

arising from each ice sheet. The idea is that while numerous ice sheet histories could account

for the barystatic sea level change associated with Meltwater Pulse 1A, only a handful of histo-

ries will be able to reconstruct departures from barystatic sea level change recorded by global

relative sea level data to within the measurement uncertainty. Such histories should theoreti-

cally correspond closely with the real ice history and therefore provide insight into palaeo ice

sheet evolution. Fingerprinting studies have inferred that the dominant meltwater contribution

came from North America (5.6 to 15.4 m), while a minor contribution may have come from

Antarctica (0 to 5.9 m), from the total 17.9 m GMSL rise (Lin et al., 2021). However, the

assumption of elasticity ignores the potential contribution of transient viscous deformation in
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response to deglaciation. If viscoelastic deformation on Earth is more complex than described

by a Maxwell body, multiple stress relaxation processes across a range of physical timescales

between the elastic limit (τ → 0) and the Maxwell timescale (τ = τ ′M) may be supported.

This type of deformation behaviour is known as transient rheology, characterised by a range

of apparent viscosities, dependent on the deformation and observation times. If Earth exhibits

transient rheology, elastic deformation may not be the only contributor towards deformation

over periods of order 1 to 1, 000 years. Indeed, Lau (2023) showed that for a viscoelastic Earth

describable by an Extended Burgers rheology, significant deviations in relative sea level over

the duration of Meltwater Pulse 1A are predicted as compared to a purely elastic response.

These results imply that it will be necessary to re-evaluate ice sheet history constraints derived

from fingerprinting studies, leading to new insights regarding the sensitivity of Antarctica’s ice

to past climate. Since the additional relaxation timescales introduced by transient rheology are

intermediate between elasticity and Maxwell viscoelasticity, transient rheology is not only an

important consideration for the applicability of elastic fingerprinting, but also for treatment of

longer timescale (τ ∼ τ ′M and longer) deglaciation signals. As a result, it is important to assess

the timescales over which transient rheology on Earth is significant, and to what extent it may

affect patterns of deformation.

In the past decade, substantial geophysical evidence has mounted for the presence of tran-

sient rheology. For example, Ivins et al. (2020) showed evidence for viscous deformation in

response to tidal forcing on timescales between 12 h and 18.6 years. Nield et al. (2023) found

that adding a Kelvin-Voigt deformation unit (consisting of a spring and dashpot in parallel) to

the traditional Maxwell setup, forming a transient rheological description known as the Burgers

model, improved fit to GPS observations of postseismic deformation (1 day to 10 year timescale)

in the northern Antarctic Peninsula, following 2003 and 2013 earthquakes in the nearby Scotia

Sea. Barletta et al. (2018) showed that the contemporary GIA response (10 year to 1, 000 year
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timescale) to ice sheet retreat in the Amundsen Sea Embayment between 1900–2014 cannot

be explained by purely elastic deformation, indicating an extremely low apparent viscosity of

η ≈ 1018 Pa s. As shown in Chapter 2, it is difficult to reconcile such a low apparent viscosity

with inferences from VS without taking transient deformation into account, indicating that such

anomalously low viscosities are not simply due to Earth’s laterally heterogeneous structure. A

similar, and even stronger example of the same behaviour was identified in relation to ice re-

treat on the Antarctic Peninsula by Samrat et al. (2021). Taken together, the aforementioned

studies are a powerful suggestion that transient rheology may be in operation, particularly con-

sidering that the data presented in each study are sensitive to a different range of deformation

timescales. Despite the growing body of geophysical evidence, the most robust indicator of

the existence of transient rheology comes from experimental data. Laboratory investigations

have probed the strain response of mantle-like rock samples to applied oscillatory stresses of

variable frequency (Faul et al., 2007; Yamauchi and Takei, 2016). Faul et al. (2007) used syn-

thetic olivine aggregates in an effort to emulate the real mineralogical make-up of Earth’s upper

mantle. Yamauchi and Takei (2016) used a synthetic borneol-diphenylamine analogue of the

olivine-basalt system, which is expected to deform similarly, and allows testing at frequencies

corresponding to mantle conditions. While the two laboratories conduct their experiments using

separate procedures, and parameterise their observations using different mathematical forms,

they both find that grain-boundary-scale deformation processes exhibit frequency-dependence.

Such frequency-dependence cannot be captured by a simplistic Maxwell description of vis-

coelastic deformation, which implies the presence of a single relaxation timescale. Instead, a

continuous relaxation spectrum must be used, which implies an infinite number of relaxation

timescales, each associated with a given strength. To describe the rheology of such a material in

terms of springs and dashpots, one would require an infinite number of Kelvin-Voigt elements,

positioned in series with a Maxwell element representative of steady-state behaviour. Alterna-
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tively, the same setup can be achieved using infinite Maxwell elements, positioned in parallel

with each other. In either setup, the stiffness and viscosity of each unit is tuned to match

the strength of relaxation at each frequency. Transient rheologies therefore contain additional

relaxation modes (on top of the steady-state Maxwell mode) via which stress can be dissipated,

the strength of which depend on the forcing timescale. They therefore exhibit time-dependent

apparent viscosities lower than that observed at steady-state (i.e., in the limit τ → ∞, where

τ represents the forcing timescale).

In recognition of the potential impact of transient rheology on the character of solid Earth

deformation, a handful of studies have attempted to incorporate time-dependent deformation

behaviour into solid Earth deformation models. As mentioned above, Nield et al. (2023) utilised

the Burgers model of transient rheology to model postseismic deformation in the northern

Antarctic Peninsula following a Mw = 7.7 strike-slip earthquake in the Scotia Sea in 2013.

Klein et al. (2016) followed a similar approach in order to fit GPS observations of postseismic

deformation following the 2010 Mw = 8.8 Maule earthquake in Chile. The Burgers model was

also used by Boughanemi and Mémin (2024) to gain insight into GIA-induced deformation in

Antarctica. The Burgers model consists of a single Kelvin-Voigt element positioned in series

with a Maxwell element. It is therefore the first step towards transforming a Maxwell vis-

coelastic rheology into a generalised transient rheology represented by a continuous relaxation

spectrum. As such, the Burgers rheology is the least computationally expensive type of tran-

sient rheology to implement within a finite element model of solid Earth deformation, since

only one additional relaxation element must be added. However, there is a key issue associated

with using a Burgers model to approximate the expression of transient rheology. Namely, the

chosen rheology has no clear relationship back to experimentally determined mechanical prop-

erties of mantle rock. This presents many of the same drawbacks as are present for the pure

Maxwell approach: one cannot safely assume that such an approximate description of Earth’s
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rheology is representative of its true deformation character, and one cannot easily generalise the

information learned about Earth’s structure from studies using a Burgers model to processes

operating at different forcing timescales. Furthermore, the lack of grounding in experimentally

verified behaviour means that it is impossible to tell, a priori, how viscosity should be parti-

tioned between the two elements of the model. For example, Nield et al. (2023) arbitrarily

fix the ratio between the viscosity of the transient Kelvin-Voigt element, and the steady-state

Maxwell element, to ηKM/ηM = 1/10. This assumption was taken to avoid the number of pa-

rameter combinations expanding beyond what was feasible to test, but significantly adds to the

uncertainty regarding whether the chosen rheological parameterisation is a valid description of

Earth’s deformation character, and serves to abstract the meaning of the recovered best-fitting

viscosity values.

In order to properly address the issue of transient rheology in numerical models of solid

Earth deformation, including GIA, rheologies such as the Burgers model should be substituted

with broadband parameterisations derived from experimental data, such as Yamauchi and Takei

(2016). To do so would bring two major advantages. Firstly, it would enable the use of cal-

ibrated maps of mantle structure derived from VS in a self-consistent fashion. For example,

estimates of laterally variable steady-state viscosity and lithospheric thickness, such as those

presented in Chapter 3, could be integrated into finite element deformation models. Secondly,

it would provide the ability to model time-dependent deformation as realistically as possible,

according to the latest experimental data pertaining to the mechanical properties of mantle

rock. Since the parameterisation of Yamauchi and Takei (2016) characterises relaxation across

a broad range of normalised frequencies, such a formalism could be applied to model physical

processes ranging from tidal loading, to postseismic deformation, to GIA. This would be an

important step towards a unified understanding of mantle rheology, as opposed to the currently

fragmented approach in which different rheologies and viscosities are assumed depending on the
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physical process considered. Successful implementation of a so-called “transient GIA model”

would motivate the revisiting of a plethora of canonical GIA studies, to identify potential

caveats in our current understanding of past, present and future sea level change arising due to

the assumption of elastic or Maxwell viscoelasticity (Lau, 2023). In this chapter, the theoretical

steps needed to apply experimentally constrained parameterisations of mantle viscoelasticity

to GIA models are made. Firstly, a Generalised Maxwell Model framework is developed to rep-

resent an arbitrary mechanical parameterisation across a broad spectrum of timescales, which

can be readily applied to a range of numerical models, including finite-element descriptions,

which are commonly used to model continuum mechanics. Secondly, the parameterisation of

Yamauchi and Takei (2016) is adapted to speed up computation of the complex compliance,

by combining the original experimental data with a modified mathematical form, within which

an array of free parameters is optimised via Bayesian inversion. Finally, the adapted param-

eterisation is integrated within a simple model of solid Earth deformation to demonstrate its

effectiveness, highlight differences in behaviour between Maxwell and transient deformation,

and provide a pathway towards transient GIA simulations on a laterally variable solid Earth.

6.2 Translating Experimental Parameterisations of Me-

chanical Behaviour Into Generalised Maxwell Form

GIA studies utilise numerical models of deformation induced by surface load changes to under-

stand changes in topography and sea level. Such models invoke conservation of momentum to

form a governing equation, which combined with a chosen rheological description of the relax-

ation modulus (e.g. in the time-domain, M(t)), can be used to solve for spatiotemporal strain

changes. On the other hand, rheological descriptions derived from laboratory data such as

Yamauchi and Takei (2016) employ the creep compliance, J(ω), to parameterise viscoelasticity.
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The purpose of this section is to understand how such experimental parameterisations can be

translated into a form applicable to numerical models. To do so, it is necessary to begin with

the foundations of linear viscoelasticity.

Consider a general mechanical body which behaves viscoelastically, which is initially at

equilibrium, to which a stress σ1 is applied at a time t′1. Then, the corresponding strain is

described at times t after t′1 by

ε(t) = J(t− t′1)σ1. (6.1)

In this equation, J = J(t) is the creep relaxation function (or simply creep function), capturing

the time-dependent strain profile in response to a unit applied stress (Nowick and Berry, 1972).

The creep function is the time-domain representation of its equivalent in the frequency-domain,

the complex compliance J∗ = J∗(ω), such that the two are related by the Fourier transform

J∗(ω) =

∫︂ ∞

−∞
J(t)e−iωtdt. (6.2)

Assuming linearity in the relationship between stress and strain, the principle of superposition

can be applied, which states that the strain response to a series of applied stresses can be found

by taking the strain response to each stress applied individually, and summing. Then, for a

discrete series of stresses, the strain response is given by

ε(t) =
i=n∑︂

i=1

J(t− t′i)σi. (6.3)

Generalising further to the case of a stress function applied continuously, σ = σ(t), the discrete

summation can simply be replaced with the integral

ε(t) =

∫︂ t

−∞
J(t− t′)

dσ(t′)

dt′
dt′. (6.4)
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By inspection of equation 6.4, it can be seen that to calculate the strain displacement at time t,

for a material describable by a creep function J(t), its entire stress history σ(t) from the earliest

time at which a non-zero stress was applied until the present time t is required. As stated

by Nowick and Berry (1972), this property derives from the fact that viscoelastic materials

contain internal variables, whose values affect the stress-strain relationship, but respond non-

instantaneously to the material’s evolution. The strain response to an applied stress has been

used to highlight such time-dependent behaviour above, however a directly analogous approach

can be taken to calculate the stress response of a general viscoelastic material to a continuous

strain evolution, which is given by

σ(t) =

∫︂ t

−∞
M(t− t′)

dε(t′)

dt′
dt′, (6.5)

where the creep compliance J(t) is replaced by its analogueM(t), known as the stress relaxation

function, or the relaxation modulus (Nowick and Berry, 1972). In this case, the entire strain

history is required to calculate the stress at time t.

In the laboratory, the complex compliance J(ω) is readily accessible, due to the fact that

experiments are conducted using an applied stress (at known amplitude, σ0, and frequency, ω

– i.e., stress is the dependent variable), and measuring the strain response (the independent

variable). Furthermore, descriptions of J(ω) from the laboratory are continuous functions,

consistent with the observation that anelastic relaxation occurs over a spectrum of relaxation

timescales. On the other hand, numerical models use mathematical descriptions of the relax-

ation modulus to track the relationship between stress and strain. If Earth’s mantle is assumed

to be spherically symmetric, a spectral approach using Love numbers can be employed, in

which case rheology must be expressed in the Laplace-domain form M(s) (where s = γ + iω is

a complex frequency variable) (Mitrovica and Peltier, 1992). Finite element formulations allow

lateral variations in Earth’s viscosity structure to be accounted for, and in this type of model,
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rheology must be expressed using the time-domain form M(t). In either case, it is necessary to

perform some kind of J →M transformation (Lau, 2024). Furthermore, finite element models

of continuum mechanics use mathematical representations of a discrete combination of spring

and dashpot components to form a given rheological description, such as the Maxwell or Burg-

ers models. For example, the generalised Maxwell model is commonly used, which consists of a

spring arranged in parallel with a finite number (NM) of Maxwell elements (spring and dashpot

in series), which themselves are arranged in parallel with one another. In such a setup, the

total strain is the same as the strain exhibited by each element, such that

ε = ε1 = ε2 = ... = εNM
, (6.6)

and the total stress is given by the sum of the stresses acting on individual elements, such that

σ =

i=NM∑︂

i=1

σi. (6.7)

Utilising these constraints in combination with expressions defining spring- and dashpot-like

behaviour, provided by

σ =Mε (6.8)

and

σ = η
dε

dt
(6.9)

respectively, the stress-strain relationship of the generalised Maxwell model as a whole can be

derived. The resulting relationship takes the form of a linear homogeneous ordinary differential

equation of second order, the solution of which yields the following relaxation function, referred

to as a Prony series:

M̃(t) = M̃U −
i=NM∑︂

i=1

αi

(︂
1− e−t/τi

)︂
, (6.10)
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where M̃U = M̃(t = 0) is the unrelaxed (instantaneous) modulus associated with the isolated

spring, αi and τi (for i = 1, 2, . . . , NM) are the discrete relaxation moduli and timescales

associated with the spring and dashpot of each Maxwell element, respectively. Alternatively,

the Prony series can be represented as

M̃(t) = M̃∞ +

i=NM∑︂

i=1

αie
−t/τi , (6.11)

where

M̃∞ = M̃U −
i=NM∑︂

i=1

αi (6.12)

represents the relaxed modulus of the material. Here, the symbol M̃(t) is used to refer to Prony

series approximations of the true relaxation function of a given material, M(t). Equation 6.11

represents the time-dependent stress response of a generalised Maxwell body to a unit instanta-

neous strain. For completeness, note that instead of a generalised Maxwell model a generalised

Kelvin-Voigt model can be used. In the Kelvin-Voigt model, a spring is arranged in series with

a finite number (NK) of Kelvin-Voigt elements (spring and dashpot in parallel), each of which

are arranged in series with each other. In this case, J̃(t) ≈ J(t) can be expressed analogously to

equation 6.11. This series can be used for problems in which creep is modelled. The number of

elements (NM or NK) chosen in each case represents the number of unique relaxation timescales

the material is assumed to exhibit. Therefore, in the limit NM → ∞ (or NK → ∞), the gener-

alised model perfectly describes materials characterised by a continuous spectrum of relaxation

timescales. The more elements (i.e., larger NM or NK) present, the more computationally

expensive a given rheology will be to implement in numerical simulations. This limitation is

related to the earlier observation that numerical models must track the entire strain history

of a material throughout a simulation, in order to calculate the corresponding stress field at a

given time. Therefore, for every additional Maxwell or Kelvin-Voigt element in the generalised
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model, an additional stress or strain history must be calculated and stored in memory.

The above observations point towards the requirement to translate experimental parame-

terisations of mechanical behaviour into a form that can feasibly be implemented in numerical

models. Finite element applications are of most interest here, since they enable consideration of

three-dimensional variations in Earth’s viscosity structure. However, it would also be beneficial

to develop a framework which can be applied to Love number formulations, which are discussed

in more detail in Section 6.4.1. Practically, such a translation method needs to allow one to

convert a continuous, frequency-dependent complex compliance parameterisation J(ω) into a

discrete, time-dependent relaxation function M(t) (and its Laplace-domain counterpart, M(s),

for spectral applications Lau, 2024). The first step in this process is to use the relationship

M∗(ω) =
1

J∗(ω)
, (6.13)

where M∗(ω) = M1 − iM2 is the frequency-domain representation of M(t), to convert exper-

imental parameterisations of J1 (storage compliance) and J2 (loss compliance) into analogous

forms for M1 (storage modulus) and M2 (loss modulus). This results in the expressions

M1(ω) =
J1(ω)⃓⃓
J∗(ω)

⃓⃓2 , (6.14)

and

M2(ω) =
J2(ω)⃓⃓
J∗(ω)

⃓⃓2 . (6.15)

The second step involves utilising the frequency-domain representation of a Prony series,

which looks like

M̃1(ω) = M̃∞ +

i=NM∑︂

i=1

αi
(ωτi)

2

1 + (ωτi)2
, (6.16)
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and

M̃2(ω) =

i=NM∑︂

i=1

αi
ωτi

1 + (ωτi)2
. (6.17)

By treating M̃
∗
(ω) = M̃1 − iM̃2 as a discrete approximation of the experimental parame-

terisation M∗(ω) obtained from equation 6.14, it is possible to fit the former to the latter

using a least-squares inversion approach, finding optimised values for the free parameters M̃U

and αi (at optimised values of τi) in the process. The elegance of this approach is that the

fitted parameters M̃U and αi(τi) can be substituted directly into the time-domain represen-

tation presented in equation 6.11. Therefore, a generalised Maxwell model can be fitted to

experimental data in the frequency domain, and then easily translated for usage in continuum

mechanics models operating in the time domain. However, this approach is complicated by the

fact that experimental parameterisations of J∗(ω), such as the pre-melting parameterisation

of Yamauchi and Takei (2016), are dependent on state variables: pressure (P ), temperature

(T ), composition (X) and grain size (d). In effect, state-dependence means that a unique best-

fitting Prony series exists for each possible combination of state variables. To circumvent this

issue, one can utilise the fact that, momentarily ignoring the high-frequency dissipation peak

associated with pre-melting, the complex compliance of polycrystalline materials appears to

follow the so-called master curve (Figure 6.1, McCarthy and Takei, 2011). The issue of how to

deal with pre-melting will be returned to later, in Section 6.2.2, after the necessary foundations

are built. The master curve parameterisation implies that the frequency-dependence of the

complex compliance is identical across different physical states, when expressed as a function

of the normalised frequency,

f ′ =
f

fM
, (6.18)

where

fM =
1

τM
, (6.19)
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Figure 6.1: Normalised modulus and attenuation, as parameterised by the master curve of
McCarthy and Takei (2011) The master curve provides a state-independent parameterisation
of the complex compliance, when expressed as a function of normalised angular frequency,
ω′ = ω/fM , which all polycrystalline materials may approximately obey.
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and the normalised Maxwell timescale τM is given by

τM =
η(P, T,X, d)

MU(P, T,X)
, (6.20)

in which the steady state viscosity of diffusion creep is

η = ηr(X)

(︃
d

dr

)︃m

exp

[︄
EA

R

(︃
1

T
− 1

Tr

)︃]︄
exp

[︄
VA
R

(︃
P

T
− Pr

Tr

)︃]︄
, (6.21)

and the instantaneous shear relaxation modulus is

MU = µ0(X) +
∂µ

∂T
∆T +

∂µ

∂P
∆P. (6.22)

By making the substitution ω → ω′, where ω′ = ω/fM , the frequency-domain Prony series M̃
∗

may be expressed as a function of normalised frequency, ω′, which results in the form

M̃1(ω
′) = M̃∞ +

i=NM∑︂

i=1

αi
(ω′τ ′i)

2

1 +
(︁
ω′τ ′i

)︁2 , (6.23)

and

M̃2(ω
′) =

i=NM∑︂

i=1

αi
ω′τ ′i

1 +
(︁
ω′τ ′i

)︁2 , (6.24)

where each Maxwell element is now defined according to a discrete normalised timescale, τ ′i =

τi/τM . Therefore, the relaxation function can be calculated at a given frequency, ω = 2πf by

first calculating the normalised Maxwell timescale (τM) associated with the present physical

state, and converting ω into its equivalent normalised frequency, ω′, before substituting ω′ in

to the normalised Prony series expression. The final step required to fully account for the

dependence of rock viscoelasticity on state variables is to make the substitution αi → M̃
′
i,

where M̃
′
i = αi/M̃U , which normalises for the state-dependentMU(P, T,X) and transforms the
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Prony series expression into its final form, where the normalised storage modulus is given by

M̃
′
1(ω

′) = M̃
′
∞ +

i=NM∑︂

i=1

α′
i

(ω′τ ′i)
2

1 +
(︁
ω′τ ′i

)︁2 , (6.25)

and the corresponding expression for the normalised loss modulus is

M̃
′
2(ω

′) =

i=NM∑︂

i=1

α′
i

ω′τ ′i

1 +
(︁
ω′τ ′i

)︁2 . (6.26)

The resulting Prony series fits provided by equation 6.25 and 6.26 can now be used to encode

self-consistency into numerical continuum mechanics models since the coefficients α′
i(τ

′
i) can be

re-dimensionalised using an appropriate state vector (P , T , X, d) at each model node.

6.2.1 Application to the Master Curve Parameterisation

As mentioned in the previous section, the master curve parameterisation of McCarthy and

Takei (2011) expresses complex compliance as a function of normalised frequency. The storage

compliance is given by

J1(ω
′) =

JU
F (ω′)

, (6.27)

where JU is the unrelaxed (instantaneous) compliance and F (ω′) is an empirically defined

function, given by

F (ω′) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑︁i=6
i=0 ak ln

(︂
ω′

2π

)︂k
for ω′

2π
≤ 10−13,

1 for ω′

2π
> 10−13,

(6.28)

where ak are empirical constants (a0 = 0.55097 ; a1 = 0.054332; a2 = −0.0023615; a3 =

−5.7175 × 10−5 ; a4 = 9.9473 × 10−6; a5 = −3.4761 × 10−7 ; and a6 = 3.9461 × 10−9). The

loss compliance is found by applying the Kramers-Kronig constraint, which ensures causality
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is observed, i.e. that J(t) = 0 when t < 0, resulting in the expression

J2(ω
′) = JU

(︃
π

2
X(ω′) +

2π

ω′

)︃
, (6.29)

where X(ω′) is an additional empirically defined function known as the relaxation spectrum,

given by

X(ω′) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.32×
(︁
2π
ω′

)︁0.39− 0.28

1+2.6×( 2π
ω′ )

0.1

for ω′

2π
≤ 10−11,

1853×
(︁
2π
ω′

)︁0.5
for ω′

2π
> 1011.

(6.30)

To calculate M ′
1(ω

′) and M ′
2(ω

′) spectra associated with the master curve parameterisation,

prior to fitting, normalised versions of equation 6.14 and 6.15 are derived, such that

M ′
1(ω

′) ≡ M1

MU

, (6.31)

=
JUJ1

|J |2
, (6.32)

=

(︁
J1/JU

)︁
(︁
J1/JU

)︁2
+
(︁
J2/JU

)︁2 , (6.33)

=
J ′
1⃓⃓

J∗′
⃓⃓2 , (6.34)

where MU = 1/JU , J
′
1 ≡ J1/JU and, by symmetry,

M ′
2(ω

′) ≡ M2

MU

, (6.35)

=
J ′
2⃓⃓

J∗′
⃓⃓2 , (6.36)

where J ′
2 ≡ J2/JU . Substituting in the master curve parameterisation, the following expressions

are found:

M ′
1(ω

′) =
F

1 + F 2
(︁
π
2
X + 2π

ω′

)︁2 , (6.37)
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Figure 6.2: Least-squares residual between generalised Maxwell fit and underlying master curve
parameterisation, as a function of the number of Maxwell elements (NM).

and

M ′
2(ω

′) =
π
2
X + 2π

ω′

F−2 +
(︁
π
2
X + 2π

ω′

)︁2 . (6.38)

The Prony series, M̃
′
1 and M̃

′
2 (equation 6.25 and 6.26, respectively) are used to obtain a

best-fitting generalised Maxwell representation of M ′
1 andM

′
2, and therefore the master curve’s

rheological behaviour. By varying the number of Maxwell elements (NM) used in the Prony

series fitting procedure and the corresponding timescale of each element, the residual misfit be-

tween each generalised Maxwell model and the underlying master curve spectra was calculated.

It was found that at least NM = 9 elements are needed to provide a good approximation in

the frequency domain (Figure 6.2). In Figure 6.3, the fit of the Prony series to the underlying

M ′
1 and M ′

2 spectra is shown. For a given value of NM , the normalised storage modulus M ′
1 is

better approximated by the Prony series than the normalised loss modulus M ′
2. The oscillatory

behaviour observed in both M ′
1 and M ′

2 is an inherent feature of the finite Prony series, but

becomes less pronounced if NM is increased.
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Figure 6.3: Prony series approximation of M ′
1(ω

′) and M ′
2(ω

′), for the master curve parameter-
isation of McCarthy and Takei (2011), using NM = 9 Maxwell elements.
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6.2.2 Application to the Pre-Melting Parameterisation

Applying the normalised Prony series approach to the pre-melting parameterisation of Ya-

mauchi and Takei (2016) is more challenging than the master curve parameterisation, because

the high-frequency dissipation peak of the former model breaks the normalised frequency scal-

ing, such that a different normalised complex compliance spectrum will be exhibited depending

on the homologous temperature

Θ ≡ T

TS
, (6.39)

of the material represented (TS is the solidus temperature, see Figure 6.4). This behaviour is

inferred to be caused by diffusionally accommodated grain boundary sliding, exhibited at near-

solidus temperatures, where small amounts of melt at the grain interface provide a lubricating

effect. The result is that the Prony series coefficients α′
i are no longer state-independent, and

will only apply to the homologous temperature at which they were calculated. A potential

solution to this issue might be to generate a look-up table of Prony series coefficients at a series

of discrete homologous temperatures. Then, for any given value of Θ, linear interpolation

could be used to estimate a set of appropriate Prony series coefficients that best represent

the deformation behaviour of mantle rock at that particular temperature. However, there is no

theoretical basis for predicting how the individual Prony series coefficients, for a chosen number

of Maxwell elements NM , should vary as a function of temperature, and therefore how best to

generate a look-up table of this kind. Here, a more rigorous solution is sought, which first

involves constructing a normalised Prony series representation of Yamauchi and Takei (2016)

at an arbitrary reference temperature, Θr, given by

M̃
′
1(ω

′,Θr) = M̃
′
∞(Θr) +

i=NM∑︂

i=1

α′
i(Θr)

(ω′τ ′i)
2

1 +
(︁
ω′τ ′i

)︁2 , (6.40)
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Figure 6.4: Normalised modulus and attenuation, as parameterised by the pre-melting curves
of Yamauchi & Takei (2016). The pre-melting parameterisation disobeys the state-independent
master curve.
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where M̃
′
1(ω

′,Θr) ≈M ′
1(ω

′,Θr) and

M ′
1 =

J ′
1(ω

′,Θr)⃓⃓
J∗′(ω′,Θr)

⃓⃓2 . (6.41)

Then, an equivalent expression can be written for a general temperature, Θ, i.e.

M̃
′
1(ω

′,Θ) = M̃
′
∞(Θ) +

i=NM∑︂

i=1

α′
i(Θ)

(ω′τ ′i)
2

1 +
(︁
ω′τ ′i

)︁2 ≈ J ′
1(ω

′,Θ)⃓⃓
J∗′(ω′,Θ)

⃓⃓2 , (6.42)

where in general the Prony series coefficients αi(Θ) are different to αi(Θr), and a relationship

between the unknown αi(Θ) and the known αi(Θr) is sought. To find it, consider the ratio

between M̃
′
1 at both Θr and Θ, which looks like

M̃
′
1(ω

′,Θ)

M̃
′
1(ω

′,Θr)
=

M̃
′
∞(Θ) +

∑︁i=NM

i=1 α′
i(Θ)

(ω′τ ′i)
2

1+(ω′τ ′i)
2

M̃
′
∞(Θr) +

∑︁i=NM

i=1 α′
i(Θr)

(ω′τ ′i)
2

1+(ω′τ ′i)
2

≈
J ′
1(ω

′,Θ)
⃓⃓
⃓J∗′(ω′,Θr)

⃓⃓
⃓
2

J ′
1(ω

′,Θr)
⃓⃓
J∗′(ω′,Θ)

⃓⃓2 . (6.43)

As it stands, this equation acts as a single constraint on a set of NM unknowns, and so it is

not possible to isolate the individual α′
i(Θ) without some further simplification or addition of

information. To this end, it is possible to utilise the fact that when

ω′ <

√︄
1− β

β

1

τ ′NM−1

, (6.44)

where β = 0.9 is an arbitrarily set dominance factor, the dominant contribution towards the

storage modulus M̃
′
1(ω

′,Θ) comes from the α′
NM

(Θ) component (Figure 6.5), and thus the

discrete summation in the numerator of equation 6.43 can be reduced to

M̃
′
1

⎛
⎝ω′ <

√︄
1− β

β

1

τ ′NM−1

,Θ

⎞
⎠ ≈ M̃

′
∞(Θ) + α′

NM
(Θ)

(︂
ω′τ ′NM

)︂2

1 +
(︂
ω′τ ′NM

)︂2 . (6.45)
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Figure 6.5: Contributions towards M̃
′
1(ω

′,Θ) from α′
i(Θ) as a function of ω′. N.B. that ω′, τ ′i

and α′
i are defined arbitrarily in this schematic diagram. When ω′ <

√︂
1−β
β

1
τ ′NM−1

, the α′
NM

(orange) component dominates the total signal (black), where β = 0.9. When
√︂

1−β
β

1
τ ′NM−2

>

ω′ ≥
√︂

1−β
β

1
τ ′NM−1

, the α′
NM

and α′
NM−1 (green) components together dominate the total signal.

When ω′ ≥
√︂

1−β
β

1
τ ′NM−2

, all three components α′
NM

, α′
NM−1 and α′

NM−2 (blue) contribute.
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Rearranging this simplified version of equation 6.43 for α′
NM

(Θ), and using the approximation

M̃
′
∞(Θ) ≈ M̃

′
∞(Θr), the following expression is found

α′
NM

(Θ) =
1 +

(︂
ω′τ ′NM

)︂2

(︂
ω′τ ′NM

)︂2
[︂
M̃

′
1(ω

′,Θr)J (ω′,Θ,Θr)− M̃
′
∞(Θr)

]︂
, (6.46)

where

J (ω′,Θ,Θr) ≡
J ′
1(ω

′,Θ)
⃓⃓
⃓J∗′(ω′,Θr)

⃓⃓
⃓
2

J ′
1(ω

′,Θr)
⃓⃓
J∗′(ω′,Θ)

⃓⃓2 . (6.47)

Having solved for α′
NM

(Θ), knowledge of this parameter can now be used to find α′
NM−1(Θ), by

utilising the fact that when

√︄
1− β

β

1

τ ′NM−2

> ω′ ≥
√︄

1− β

β

1

τ ′NM−1

, (6.48)

the dominant contribution towards the storage modulus comes from the α′
NM

(Θ) and α′
NM−1(Θ)

components, and thus it is found that

α′
NM−1(Θ) =

1 +
(︂
ω′τ ′NM−1

)︂2

(︂
ω′τ ′NM−1

)︂2

⎡
⎢⎢⎣M̃

′
1(ω

′,Θr)J (ω′,Θ,Θr)− M̃
′
∞(Θr)− α′

NM
(Θ)

(︂
ω′τ ′NM

)︂2

1 +
(︂
ω′τ ′NM

)︂2

⎤
⎥⎥⎦ .

(6.49)

This relationship is recursive, such that one can solve for all parameters αi(Θ) by working in

order down from i = NM to i = 1, and using the formula

α′
i(Θ) =

1 + (ω′τ ′i)
2

(︁
ω′τ ′i

)︁2

⎡
⎢⎢⎣M̃

′
1(ω

′,Θr)J (ω′,Θ,Θr)− M̃
′
∞(Θr)−

j=NM∑︂

j≥i+1

α′
j(Θ)

(︂
ω′τ ′j

)︂2

1 +
(︂
ω′τ ′j

)︂2

⎤
⎥⎥⎦ , (6.50)
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where

√︄
1− β

β

1

τ ′i−1

> ω′ ≥
√︄

1− β

β

1

τ ′i
if i ≥ 2, (6.51)

ω′ >

√︄
1− β

β

1

τ ′i
if i = 1. (6.52)

Each time the formula is applied, a piece of information is added: that M̃
′
1(Θ) within a certain

frequency band (defined by equation 6.51 and 6.52) is controlled only by components α′
j whose

corresponding relaxation timescale, τ ′j, is long enough that the expression

α′
j(Θ)

(︂
ω′τ ′j

)︂2

1 +
(︂
ω′τ ′j

)︂2 (6.53)

exhibits significant variation over this region of frequency space, such that a non-negligible

contribution is made to the overall storage modulus. This information allows a single constraint

on NM unknowns to be transformed into a set of NM constraints on the same number of

unknowns, allowing each component to be isolated.

The accuracy of the scaling approach to estimating α′
i(Θ) based on a set of Prony coef-

ficients corresponding to a reference temperature, Θr, depends firstly on how accurately the

reference series approximates the underlying pre-melting parameterisation. This accuracy can

be improved by moving to larger NM , with tests (evaluating the residual misfit between the

approximate reference series and the underlying parameterisation it is derived from) implying

that NM ≥ 9 is favourable. However, assumptions on the dominant contribution towards the

shear modulus at a given frequency, ω′, rely on there being sufficient spacing between individual

components of the series. If ∆τi = τi− τi−1 (for i = 2, 3, ..., NM) becomes too small, one will no

longer be able isolate the contribution of α′
i from that of α′

i−1, and the recursion relationship
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Figure 6.6: Prony series approximation of M ′
1(ω

′) and M ′
2(ω

′) for the pre-melting parameter-
isation of Yamauchi & Takei (2016), using NM = 15 Maxwell elements, and a homologous
temperature Θ = 0.95. The Prony series fit (orange) appears almost identical to the scaling fit
(blue), which was produced by obtaining a Prony series fit at a reference temperature, Θ = 0.80,
and utilising the recursive formula of equation 6.50 to approximate the corresponding series at
Θ = 0.95.
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will become unstable. This is not expected to be an issue for

NM ≤ log10

(︄
τ ′NM

τ ′1

)︄
, (6.54)

such that there is less than one discrete Prony coefficient per decade in normalised frequency

space. In the case of transient rheology, a parameterisation is sought over the normalised fre-

quency range ω′ = 2π× 10−7 to ω′ = 2π× 1016, in which case NM ≤ 23 satisfies condition 6.54.

Therefore, a generalised Maxwell model containing between 9 and 23 elements is found to be

suitable for application of the pre-melting parameterisation within numerical models of contin-

uum mechanics. The recursive formula of equation 6.50 was tested using NM = 15 Maxwell

elements to scale from a reference temperature, Θr = 0.8, up to an arbitrarily selected tem-

perature, Θ = 0.95. Figure 6.6 shows that the resulting fit is almost identical to that which

is produced by constructing an approximate Prony series fit of the same number of elements

at Θ = 0.95, which means that the method is working as intended. As a result, the difference

between the reference Prony series approximation and the true reference spectrum is by far the

dominant control on the accuracy of the constructed model at an arbitrary temperature, Θ,

as compared to the error introduced by performing the recursive scaling method. This means

that more complicated descriptions of viscoelasticity, such as Yamauchi and Takei (2016), can

just as accurately be implemented in numerical models as their more simple counterparts, such

as McCarthy and Takei (2011). The focus should therefore be on using the most realistic de-

scription of mantle rock available, and optimising NM and τ ′i such that a good quality reference

Prony series fit is obtained.
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6.3 Adapting Pre-Melting Parameterisation For Com-

putational Efficiency

Having shown that the pre-melting parameterisation of Yamauchi and Takei (2016) can be

accurately converted into a normalised Prony series, which can be scaled to any physical state

of interest, attention can be turned towards making its implementation in numerical models

computationally efficient. Consider a finite element discretisation of Earth’s volume, within

which each node has a unique physical state, represented by a given temperature (T ), pressure

(P ) and grain size (d). For simplicity composition (X) will be treated as constant, but it is

not necessary to do so. Then, the stress relaxation function M(t) relevant to each model node

should be calculated. To do so, a parameterisation of the solidus must be used to calculate

the node-variable homologous temperature Θ. Having obtained Θ, the temperature-dependent

normalised Prony coefficients, α′
i(Θ), can be calculated at each node using the recursive scaling

relation expressed in equation 6.50. Each time this calculation is performed, multiple calls are

made to the parameterisation of complex compliance within the pre-melting framework, which

looks like

J1 = JU

⎛
⎜⎝1 +

ABτ
αB
S

αB

+

√
2π

2
APσP

⎛
⎝1− erf

[︄
ln
(︁
τP/τS

)︁
√
2σP

]︄⎞
⎠

⎞
⎟⎠ , (6.55)

J2 = JU

⎛
⎝τS +

πABτ
αB
S

2αB

+
π

2
AP exp

[︄
− ln2(τP/τS)√

2σP

]︄⎞
⎠ . (6.56)

To redimensionalise the obtained normalised Prony series, normalised Prony series coefficients

must be converted into moduli, using knowledge of the unrelaxed modulus, MU . In addition,

normalised timescales τ ′i = τi/τM must be converted into real timescales using knowledge of the

Maxwell timescale, τM = η/MU , where the steady state viscosity of diffusion creep is provided

by

η = ηr

(︃
d

dr

)︃m

Aη exp

[︄
EA

R

(︃
1

T
− 1

Tr

)︃]︄
exp

[︄
VA
R

(︃
P

T
− Pr

Tr

)︃]︄
. (6.57)
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In the above equations, the three homologous temperature-dependent functions AP (Θ), σP (Θ),

and Aη(Θ) define the amplitude and width of the high-frequency dissipation peak, and the

effect of pre-melting on viscosity, respectively. They are piecewise functions, constructed using

several sub-functions, which taken together cover the full domain of possible Θ values. The

dissipation peak amplitude is given by

AP (Θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.01 if Θ < 0.91,

0.01 + 0.4(Θ− 0.91) if 0.91 ≤ Θ < 0.96,

0.03 if 0.96 ≤ Θ < 1,

0.03 + β(ϕ) if Θ ≥ 1,

(6.58)

the peak width is given by

σP (Θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if Θ < 0.92,

4 + 37.5(Θ− 0.92) if 0.92 ≤ Θ < 1,

7 if Θ ≥ 1,

(6.59)

and the effect of pre-melting on steady state diffusion creep viscosity is given by

Aη(Θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Θ < Θη,

exp
[︂
− Θ−Θη

Θ−ΘΘη ln γ
]︂

if Θη ≤ Θ < 1,

γ−1 exp(−γϕ) if Θ ≥ 1.

(6.60)

where melt fraction is assumed to be negligible (i.e., ϕ = 0), and the parameters γ = 5 and

Θη = 0.94 are taken from the observations of Yamauchi and Takei (2016) pertaining to borneol

sample 41, which are considered to be of highest available quality. Numerical implementation
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of the above functions requires the use of “if else” statements, which are notoriously slow to

implement computationally because they obfuscate the vectorisation of function calls. Since

computing the viscoelastic properties relevant to each discrete node of a finite element model

requires AP , σP and Aη to be calculated, it is preferable to replace their piecewise parameteri-

sations with a smoothly varying, continuous function which covers the entire domain. Further-

more, the parameterisations of AP , σP and Aη were defined subjectively (Yasuko Takei pers.

comm.). That is, Yamauchi and Takei (2016) did not use numerical optimisation to find best-

fitting parameterisations of AP , σP and Aη to the underlying experimental data. This aspect is

unideal because parameterisations of physical behaviour based on experiments should remain

as faithful to the observations as possible, and this can only be ensured in an objective fashion

by using some form of numerical optimisation. Furthermore, applications of the pre-melting

parameterisation inherently assume that it is a true representation of mantle rock deformation.

In fact, if an optimisation technique is used to characterise the range of possible forms for AP ,

σP and Aη which fit the underlying data, it starts to become possible to take this source of

phenomenological uncertainty into account when applying the pre-melting model to geophysical

applications. Therefore, when replacing the piecewise AP , σP and Aη definitions with functions

for which only a single expression is required to define each function across the whole domain

of possible Θ values, optimisation will be used to obtain the best-fitting parameterisation.

To within a change of sign, each of the functions AP , σP and Aη as defined by Yamauchi

and Takei (2016) behave very similarly, particularly in the absence of melt (Figure 6.7). The

amplitude and width of the dissipation peak maintain a constant value beneath some lower

threshold Θ, above which they increase linearly, until they reach a maximum value at a higher

threshold, which is then preserved for all higher temperatures. The viscosity reduction factor is

initially of unit value, then decreases approximately linearly, until it reaches a minimum value,

preserved for all higher temperatures. While Yamauchi and Takei (2016) choose a unique
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Figure 6.7: Homologous temperature dependence of AP , σP and Aη as parameterised by Ya-
mauchi and Takei (2016).
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Figure 6.8: Schematic representation of the scaled hyperbolic tangent function.

lower and higher threshold, determining the position in homologous temperature space across

which variations in the individual functions occur, for each of AP , σP and Aη, the lower and

higher thresholds presumably pertain to the onset and saturation of pre-melting as a physical

phenomenon, respectively. Therefore, it may be preferable to parameterise AP , σP and Aη

according to universal temperature thresholds. A reasonable approximation of the shapes of

AP , σP and Aη can be obtained using scaled hyperbolic tangent functions, which are represented

generally as

y(Θ) = (ymax − ymin)
[︂
1 + exp

(︁
−2k(Θ−Θ0)

)︁]︂
+ ymin, (6.61)

where ymin defines the minimum value, ymax − ymin is the amplitude of variation, Θ0 is the

threshold temperature about which functional variations are symmetric, and k is a scaling factor
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representing the range of temperatures over which variations occur. A schematic representation

of the scaled hyperbolic tangent function is shown in Figure 6.8, highlighting the effect of each

parameter on the function’s shape. Applying the assumption that each of AP , σP and Aη should

exhibit variations over the same range of pre-melting temperatures, it follows that k and Θ0

are treated as constant with respect to the choice of pre-melting function. On the other hand,

ymin and ymax should be treated as unique to each particular function. In the case of Aη, it is

known that ymin = 1 and ymax = γ−1 = 0.2, as constrained by Yamauchi and Takei (2016).

6.3.1 Fitting AP , σP and Aη to Experimental Data

In order to invert for a set of best-fitting pre-melting parameters, anelasticity and diffusion creep

viscosity data from the original experiments of Yamauchi and Takei (2016) were obtained. The

anelasticity data consist of a set of measurements of the storage and loss compliance (J1 and

J2, respectively) as a function of homologous temperature and normalised forcing frequency.

These data allow for the constraint of AP and σP , since these functions control the effect of

pre-melting on frequency-dependent shear relaxation, and therefore J1 via equation 6.55, and

J2 via equation 6.56. The viscosity data consist of a series of inferred viscosities as a function of

homologous temperature. These data are collected by performing a series of creep tests, which

involve applying a small shear stress, σ, and tracking how the strain response evolves over time,

ε(t) (see Figure 8, Yamauchi and Takei, 2016). Since σ is held constant throughout the study,

ε(t) is a simple linear relationship corresponding to steady state diffusion creep. Viscosity is

the constant of proportionality linking the observed strain rate to the applied stress, meaning

it can be calculated from the creep test using

η = σ

(︃
dε

dt

)︃−1

. (6.62)
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Function Parameter Prior li Prior ui Posterior µi Posterior si MAP

AP , σP and Aη
k 5 200 8.55 5.72 16.0
Θ0 0.9 1.0 0.949 0.023 0.932

AP
ymin 0 0.02 0.01275 0.00484 0.00235
ymax 0.02 0.04 0.0292 0.0054 0.0325

σP
ymin 3.0 5.0 4.03 0.28 3.95
ymax 6.0 8.0 6.99 0.29 6.58

ln η
a0 -46.1 -23.0 -33.5 6.3 -26.9
a1

1000 11.5 23.0 19.4 1.9 17.5

Table 6.1: Prior and posterior estimates of the pre-melting parameters. For each parameter, a
lower and upper uniform prior bound is reported (li and ui, respectively), as well as the mean
and standard deviation posterior estimate (µi and si), and the maximum a posteriori estimate.

The relationship between viscosity and temperature is given by equation 6.57. Taking the

natural logarithm, it looks like

ln η = lnAη + ln ηr +m ln

(︃
d

dr

)︃
− EA + VAPr

RTr
+
EA + VAP

R

1

T
, (6.63)

from which it can be seen that at constant grain size and pressure, the pre-melting function

Aη(Θ) controls deviations of the ln η
(︁
1
T

)︁
relationship away from linearity, i.e.

ln η = lnAη + a0 + a1
1

T
, (6.64)

where

a0 ≡ ln ηr +m ln

(︃
d

dr

)︃
− EA + VAPr

RTr
(6.65)

and

a1 ≡
EA + VAP

R
(6.66)

are unknown parameters relating to the reference viscosity, grain size, activation energy, activa-

tion volume and reference pressure of the tested borneol sample, and therefore a0 and a1 are to

be fitted alongside Aη as part of the inversion procedure. Since the three pre-melting functions
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Figure 6.9: Best-fitting pre-melting functions (solid line=MAP; pale shaded region=central
99% credible interval; dark shaded region=1σ (68%) credible interval) compared to original
functional forms from Yamauchi and Takei (2016, dashed line).
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are connected by the same underlying variables k and Θ0, the anelasticity and viscosity data

are treated simultaneously, using a joint inversion procedure. This is because variations in k

and Θ0 made to accommodate the structure of the anelasticity data will affect the fit to the

viscosity data, and vice versa. In order to evaluate the distribution of possible values the free

inversion parameters could reasonably take, and therefore the uncertainty in the parameteri-

sation of pre-melting behaviour, a Bayesian inversion approach was taken, analogous to that

applied in the context of geophysical data in Chapter 2. There were eight parameters to be

fitted in total: k, Θ0, ymin and ymax for each of AP and σP , and a0 and a1, which determine

the linear component of the ln η
(︁
1
T

)︁
relationship. Together they form the model vector X . A

uniform prior distribution was assumed for each parameter, such that the inversion results were

driven purely by the applied data constraints. For a general parameter Xi with corresponding

prior lower bound li, and upper bound ui, the prior probability density on Xi is given by

p(Xi) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ui−li

for li ≤ Xi ≤ ui,

0 otherwise.

(6.67)

The prior bounds (li, ui) for each parameter were chosen based on the most conservative view

of the possible range of parameter values when plotting fits between the model and the data

(Table 6.1). The overall prior density was then constructed by multiplying together the prior

density on each parameter, such that

p(X ) =

i=Np∏︂

i=1

p(Xi), (6.68)

where Np = 8 is the number of free parameters in the model vector X .

A Gaussian likelihood function was used for each of the three data sets, J ′
1(ω

′,Θ), log10 J
′
2(ω

′,Θ)
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Figure 6.10: Fit of scaled hyperbolic tangent pre-melting parameterisation to anelasticity data
(solid line=MAP; shaded region=1σ (68%) credible interval).
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and ln η
(︁
1
T

)︁
, given by

p(dk|X ) =
1

(2π)Nk/2 |Σk|1/2
exp

(︃
−1

2

(︂
dk − d̂k

)︂T
Σ−1

k

(︂
dk − d̂k

)︂)︃
, (6.69)

where dk represents the kth data set containing Nk data points, d̂k = d̂k(X ) the corresponding

model prediction, and Σk the data covariance matrix containing the uncertainty on each data

point. Note that the use of hyperparameters was neglected in this inversion for simplicity; this

issue will be returned to during the more rigorous treatment described in Section 6.3.3. The

overall likelihood was then constructed, as usual, by multiplying together the likelihood on each

parameter, such that

p(D|X ) =

k=Nd∏︂

k=1

1

(2π)Nk/2 |Σk|1/2
exp

(︃
−1

2

(︂
dk − d̂k

)︂T
Σ−1

k

(︂
dk − d̂k

)︂)︃
, (6.70)

where Nd = 3 is the total number of data sets. As in Chapter 2 with the inversion for best-

fitting viscoelastic parameters using geophysical data, the GASWAM sampling algorithm was

used to ensure efficient sampling of the multidimensional parameter space. The inversion was

run for a total of 1, 000, 000 trials, with a burn-in phase of 10, 000 trials, after which random

sampling around a region of high-likelihood parameter combinations occurred. A summary of

the inverted parameters is provided in Table 6.1. The maximum a posteriori (MAP) model

from the inversion corresponds simply to the highest likelihood, and therefore lowest misfit

set of parameters, owing to the assumption of uniform priors. Predictions of AP , σP and

Aη using the MAP model are shown in Figure 6.9, alongside 99% and 1σ (68%) credible

intervals, and the original parameterisation of Yamauchi and Takei (2016). They show that

a wide range of pre-melting models are plausible, within the constraints of the experimental

data. This includes models exhibiting sharp changes in pre-melting behaviour over a narrow

range of homologous temperatures, as well as models exhibiting a much smoother transition, as
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Figure 6.11: Fit of scaled hyperbolic tangent pre-melting parameterisation to viscosity data
(solid line=MAP; pale shaded region=central 99% credible interval; dark shaded region=1σ
(68%) credible interval). Pre-melting effect log10Aη shown in lower panel by removing the
linear portion of the trend, log10ηL ≡ log10e

(︁
a0 + a1

1
T

)︁
, from the viscosity. N.B. that data

shown in lower panel is based on log10ηL derived from the MAP values of a0 and a1, and is
therefore not entirely free from modelling assumptions.
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compared to Yamauchi and Takei (2016). The MAP model falls into the latter category. Fits

between the inverted pre-melting models and the anelasticity data are shown in Figure 6.10. A

high level of agreement is observed across a wide range of frequencies and temperatures, which

is corroborated by a root-mean-square (RMS) misfit analysis. The RMS between measured and

predicted values of the normalised modulus, for the MAP model, is given by

E
(︂⃓⃓
M ′⃓⃓)︂ =

⌜⃓
⎷⃓ 1

N|M ′|

i=N|M′|∑︂

i=1

(︂
d(|M ′|)i − d̂(|M ′|)i

)︂2
, (6.71)

where N|M ′| is the number of anelasticity testing data points, d(|M ′|) is the normalised modulus

data, and d̂(|M ′|) the corresponding model prediction. In the case of Yamauchi and Takei

(2016), E
(︁
|M ′|

)︁
= 0.0139. For the optimised pre-melting parameterisation based on scaled

hyperbolic tangent functions, E
(︁
|M ′|

)︁
= 0.0135, which corresponds to a 3% improvement in

fit. To compute RMS values for attenuation, the following measure is used

E(Q−1) =

⌜⃓
⎷⃓ 1

NQ−1

i=NQ−1∑︂

i=1

(︂
d (log10Q

−1)i − d̂ (log10Q
−1)i

)︂2
, (6.72)

where log10Q
−1 is used to better account for attenuation variations which span multiple orders

of magnitude. For the original parameterisation of Yamauchi and Takei (2016), E(Q−1) =

0.0796. For the optimised parameterisation, E(Q−1) = 0.0570, which corresponds to a 28%

improvement in fit. Therefore, not only does the revised parameterisation offer improvements

in terms of computational efficiency, crucial for implementation in numerical models of Earth

deformation, but it is also arguably more faithful to the underlying experimental data.

Finally, the fit of the optimised pre-melting parameterisation to the creep test data is shown

in Figure 6.11. For this data set, RMS values are calculated according to

E(η) =

⌜⃓
⎷⃓ 1

Nη

i=Nη∑︂

i=1

(︂
d(log10η)i − d̂(log10η)i

)︂2
. (6.73)
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For the original parameterisation of Yamauchi and Takei (2016), E(η) = 0.0675, and for the

optimised parameterisation, E(η) = 0.0789. Therefore, in this case, it appears as if the original

parameterisation performs 14% better. However, note that the η(T ) data set is limited to eight

data points, which makes E(η) highly sensitive to potential outliers. The data point for which

1000

T
= 3.38 (6.74)

and

log10η = 13.8 (6.75)

appears anomalously high in Figure 6.11, particularly when viewing the non-linear component

of the viscosity-temperature trend, which may indicate some kind of error arose during mea-

surement. If this data point is removed from the analysis, the viscosity RMS is revised to

E(η) = 0.0721 for Yamauchi and Takei (2016), and E(η) = 0.0580 for the optimised parame-

terisation, such that the latter performs 20% better than the former.

6.3.2 Influence of Optimised Pre-Melting Parameterisation on Pre-

dictions of Antarctic Mantle Structure

By altering the functional form of the pre-melting parameterisations AP , σP and Aη, the form of

the complex compliance J∗ = J1+iJ2 and therefore the relationship between seismic observables

(VS, Q
−1) and thermodynamic parameters (T , η) is altered as well. For example, at a fixed

temperature, increasing AP or σP directly increases the storage modulus and therefore reduces

VS, meanwhile decreasing Aη indirectly has the same effect by shifting the normalised frequency

towards a lower value (Figure 6.12). Mathematically, this can be seen by noting that

Aη ∝ η ∝ τM ∝ ω′, (6.76)
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Figure 6.12: Visualising the influence of pre-melting parameter values on VS(ω
′) at fixed tem-

perature. Upper panel shows the effect of increasing AP by 10%, lower panel shows the effect of
increasing σP by 10%. Dashed lines show the effect of decreasing Aη by 30% on the normalised
angular frequency associated with seismic waves.
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and

∂VS
∂ω′ > 0, (6.77)

such that

VS ∝ Aη. (6.78)

Given that modifying the pre-melting parameterisation causes an alteration to the VS(T ) rela-

tionship, it is important to explore the implications on predictions of Antarctic thermomechan-

ical structure. Therefore, the Bayesian inverse calibration procedure introduced and applied in

Chapters 2 and 3, was reapplied using the same geophysical data as before, but using the new

MAP forms for AP , σP and Aη. The resulting collection of posterior samples exhibits a very

similar covariance structure to that observed using the original parameterisation of Yamauchi

and Takei (2016), as can be seen by the shape of the parameter trade-offs in Figure 6.13. Like-

wise, a similarly good fit to the underlying geophysical data is observed (Figure 6.14), although

the effect of anelasticity on the oceanic lithosphere VS(T ) relationship appears enhanced for

the adapted parameterisation, as compared to Yamauchi and Takei (2016). Referring back

to Figure 6.12, this could be caused by the fact that σP is higher, and Aη is lower, for the

modified parameterisation as compared to their Yamauchi and Takei (2016) counterparts over

a wide range of temperatures less than Θ ∼ 0.97. As a consequence of the enhanced anelastic

behaviour, a low wave-speed anomaly of given amplitude is associated with a lower tempera-

ture. To visualise the impact of this effect on predictions of temperature at each depth slice,

the difference between potential temperature predictions from the original and modified pa-

rameterisation (referred to as YT16 and YT16m in equations, respectively) for a collection of

posterior models was calculated according to

∆Ti(r, θ, φ) = T i
YT16m − T i

YT16, (6.79)
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Figure 6.13: Covariance between posterior distributions of viscoelasticity parameters for the
modified pre-melting parameterisation.
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Figure 6.14: Assessing fit of inverted viscoelasticity parameters for the modified pre-melting
parameterisation. Fit of post burn-in models to the four geophysical data sets used to constrain
the inversion procedure (circles/error bars; see Chapter 2). Pale shaded regions represent the
99% credible interval, and dark shaded regions represent the 50% credible interval. (a) Plate
cooling model fit for depth ranges 50–75 km (blue), 75–100 km (purple), and 100–125 km (red).
(b) Adiabatic model fit for depth range 225–400 km. (c) QRFSI12 seismic attenuation model
fit at depths 150–400 km beneath ocean floor for ages ≥ 100 Ma. (d) Average viscosity between
225 and 400 km compared to η = 1020 ± 1 Pa s estimate.
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Figure 6.15: Mean potential temperature difference between original and modified pre-melting
parameterisation, µ∆T = T i

YT16m − T i
YT16.
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Figure 6.16: Mean viscosity difference between original and modified pre-melting parameteri-
sation, µη = ηiYT16m − ηiYT16. Dashed line demarcates regions for which η ≥ 1022.5 Pa s, where
η = ηYT16m.
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where i refers to a particular model selected from the posterior distribution. The mean value

µ∆T =
∑︂

i

∆Ti (6.80)

corresponds to the expected difference in potential temperature between the two models, shown

in Figure 6.15. The modified pre-melting parameterisation predicts temperatures on average

3.7 ◦C, 1.5 ◦C, 4.7 ◦C and 27.3 ◦C cooler than its Yamauchi and Takei (2016) counterpart, for

the depth slices 75 km, 150 km, 250 km and 350 km respectively. Such temperature differentials

are relatively insignificant in comparison to variations due to uncertainty in the viscoelasticity

parameters, which are typically 10 ◦C to 50 ◦C, and increasing with depth. On the other

hand, viscosity estimates are more heavily impacted, as shown in Figure 6.16. Despite the

presence of cooler temperatures, viscosity values outside of the lithosphere are up to 1.5 orders

of magnitude lower. A contribution towards this differential arises from the fact that Aη of the

modified parameterisation is lower than that of Yamauchi and Takei (2016) when Θ ≤ 0.98.

However, the ratio

AYT16m
η

AYT16
η

(6.81)

only reaches its minimum, 0.55 when Θ = 0.94, which would only cause a viscosity reduc-

tion of 0.26 orders of magnitude. Therefore, the dominant contribution is from the shift in

inverted viscoelasticity parameters. In particular, an increase in the average value of EA from

542 kJmol−1 to 727 kJmol−1, and VA from 5.35 cm3 mol−1 to 7.11 cm3 mol−1.

6.3.3 Co-Inverting For Pre-Melting and Viscoelasticity Parameters

With Experimental and Geophysical Data

In the previous section, it was shown that modifying the pre-melting parameterisation of Ya-

mauchi and Takei (2016) has a noticeable impact on predictions of Antarctic mantle structure,
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even if the corresponding viscoelasticity parameters are re-calibrated. In particular, predictions

of upper mantle viscosity can be significantly impacted. However, only the MAP pre-melting pa-

rameters defining the modified AP (Θ), σP (Θ) and Aη(Θ) relationships were considered, whereas

a considerable range of possible relationships were obtained upon fitting the experimental data

(Figure 6.9). In order to robustly account for the effect of uncertainty in the complex compliance

on conversions between VS and thermodynamic variables, uncertainty in both the pre-melting

and viscoelasticity parameters must be considered. In addition, since both classes of parameters

affect inferences of thermodynamic variables, there is likely to be trade-off between parameters

coming from each class. This warrants an analysis in which the pre-melting and viscoelasticity

parameters are co-inverted. Therefore, the Bayesian framework used previously to invert sep-

arately for viscoelasticity parameters using geophysical data, and for pre-melting parameters

using experimental data, was adapted into a unified method to invert for both sets of param-

eters using both types of data. This adaptation is simple to implement, following the steps

described below.

The model space is extended to include all seven viscoelasticity parameters, as well as all

eight pre-melting parameters, i.e.

m =

[︃
µ0,

∂µ

∂T
,
∂µ

∂T
, ηr, EA, VA,

∂TS
∂z

, k,Θ0, ymin(AP ), ymax(AP ), ymin(σP ), ymax(σP ), a0, a1

]︃T
.

(6.82)

The prior density is calculated by multiplying the prior density on each individual parameter,

where the viscoelasticity priors follow Gaussian distributions, and the pre-melting priors follow

uniform distributions. A summary of the prior assumption used for each parameter is given in

Table 6.2. As before, the overall likelihood is constructed by multiplying the likelihood on each

data set. In order to appropriately assign hyperparameters to each experimental data point,

the anelasticity data pertaining to J ′∗(ω′,Θ) are separated out by homologous temperature,
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Function Parameter Prior Posterior µi Posterior si MAP

MU (T, P )
µ0 (GPa) N ∼ (81, 8) 74.6 0.4 74.8

∂µ/∂T (GPaK−1) N ∼ (−0.014, 0.003) −0.0127 0.0005 −0.0132
∂µ/∂P (unitless) N ∼ (1.6, 0.2) 2.04 0.07 2.14

η(T, P )
log10 ηr (Pa s) N ∼ (22, 3) 22.5 0.3 22.7
EA (kJmol−1) N ∼ (400, 200) 528 56 581
VA (cm3mol−1) N ∼ (6, 4) 7.00 2.04 9.56

TS(z) ∂TS/∂z (K km−1) N ∼ (2.25, 2.25) 2.11 0.17 2.14

AP , σP and Aη
k U ∼ (5, 200) 29.1 4.1 31.7
Θ0 U ∼ (0.9, 1.0) 0.939 0.003 0.939

AP
ymin U ∼ (0, 0.02) 0.00903 0.00095 0.00946
ymax U ∼ (0.02, 0.04) 0.0328 0.0019 0.0323

σP
ymin U ∼ (3.0, 5.0) 4.30 0.09 4.33
ymax U ∼ (6.0, 8.0) 6.20 0.18 6.12

ln η
a0 U ∼ (−46.1,−23.0) -26.5 1.9 -26.1
a1

1000 U ∼ (11.5, 23.0) 17.3 0.6 17.2

Table 6.2: Prior and posterior estimates of the viscoelasticity and pre-melting parameters as
constrained via joint inversion. For each parameter, a prior distribution is specified, as well as
the mean and standard deviation posterior estimate (µi and si), and the maximum a posteriori
estimate.

with a hyperparameter assigned to each set of measurements at given Θ. This decision is taken

to reflect the fact that the experimental data were collected by heating a sample of borneol

to a given target temperature, before measuring the strain response to an applied oscillatory

stress over a spectrum of frequencies. Therefore, the data are inherently grouped by Θ, and

it is reasonable to assume that a different average uncertainty may apply to each group. For

each set of anelasticity data associated with a given Θ, referred to as dan,Θ, the components of

J ′∗(ω′) are expressed in terms of a normalised shear modulus

⃓⃓
M ′⃓⃓(ω′) =

1√︁
J

′2
1 + J

′2
2

, (6.83)

and attenuation

Q−1(ω′) =
J ′
2

J ′
1

, (6.84)
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where

J ′∗ =
1

|M ′|e
i tan−1(Q−1). (6.85)

Then, the likelihood function for each Θ is calculated using the expression

log10 p(dan,Θ|X ) =
log10 p(|M ′|Θ|X ) + log10 p(Q

−1
Θ |X )

2
, (6.86)

where Θ is used as an index to refer to data points collected at this particular homologous

temperature, normalised modulus likelihoods p(|M ′|Θ|X ) are given by

p
(︂⃓⃓
M ′⃓⃓

Θ
|X
)︂
= F|M ′|,Θ exp

(︃
−1

2

(︂⃓⃓
M ′⃓⃓

Θ
−
⃓⃓
M ′⃓⃓ˆ

Θ

)︂T
Σ|M ′|,Θ

−1
(︂⃓⃓
M ′⃓⃓

Θ
−
⃓⃓
M ′⃓⃓ˆ

Θ

)︂)︃
, (6.87)

where the prefactor

F|M ′|,Θ ≡ 1
(︁
2πΣ|M ′|,Θ

)︁NΘ/2 ⃓⃓
Σ|M ′|,Θ

⃓⃓1/2 , (6.88)

and attenuation likelihoods p(Q−1
Θ |X ) are given by

p(Q−1
Θ |X ) = FQ−1,Θ exp

(︃
−1

2

(︂
Q−1

Θ − Q̂
−1

Θ

)︂T
Σ−1

Q−1,Θ

(︂
Q−1

Θ − Q̂
−1

Θ

)︂)︃
, (6.89)

where

FQ−1,Θ ≡ 1

(2πσΘ)
NΘ/2

⃓⃓
ΣQ−1,Θ

⃓⃓1/2 , (6.90)

such that the hyperparameters σΘ are applied to all data points within the data set pertaining to

the temperature Θ. In these equations, Σ|M ′|,Θ and ΣQ−1,Θ refer to the data covariance matrices,

containing the uncertainty on each data point. In the absence of experimentally determined

measurement uncertainties, a standard percentage error of 10% was applied to all data points,

which could be scaled up and down between data sets of different Θ by the hyperparameters.

NΘ refers to the number of data points within dan,Θ i.e., the number of frequencies sampled at
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a given temperature Θ.

A single hyperparameter is applied to the creep test data, reflecting the fact that this

data set is one dimensional, depending only on temperature. The likelihood function for the

laboratory viscosity data therefore takes the form

p(ηlab|X ) = Fηlab exp

(︃
−1

2
(log10 ηlab − log10 η̂lab)

T Σ−1
ηlab

(log10 ηlab − log10 η̂lab)

)︃
, (6.91)

where

Fηlab ≡ 1
(︁
2πσηlab

)︁Nηlab
/2 ⃓⃓

Σηlab

⃓⃓1/2 (6.92)

The likelihood function for the experimental data is calculated by multiplying together the

likelihood of each of the nine individual laboratory data sets (eight homologous tempeartures

for which anelasticity data were collected, and one creep test data set), such that

p(dlab|X ) = p(ηlab|X )
∏︂

Θ

p(dan,Θ|X ). (6.93)

Finally, the overall likelihood function is found by multiplying together the likelihood functions

derived from the geophysical and laboratory data constraints, such that

p(D|X ) = p(dgeo|X )p(dlab|X ), (6.94)

where p(dgeo|X ) is the likelihood function for all four geophysical constraints combined, calcu-

lated as described in Chapter 2.

Applying the Bayesian inversion method, including the aforementioned adaptations, leads

to a set of posterior outputs which simultaneously provide a good fit to each of the geophysical

(Figure 6.17) and experimental (Figure 6.18 and 6.19) data sets. Revisiting the RMS metrics

used to assess the fit of a given pre-melting parameterisation to the experimental compliance
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Figure 6.17: Assessing fit of inverted viscoelasticity and pre-melting parameters to geophysical
data constraints (circles/error bars; see Chapter 2). Pale shaded regions represent the 99%
credible interval, and dark shaded regions represent the 50% credible interval.
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Figure 6.18: Fit of inverted pre-melting parameters constrained via joint inversion approach to
anelasticity data (solid line=MAP; shaded region=1σ (68%) credible interval).
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Figure 6.19: Fit of inverted pre-melting parameters constrained via joint inversion approach
to laboratory viscosity data (solid line=MAP; pale shaded region=99% credible interval; dark
shaded region=1σ (68%) credible interval).
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Figure 6.20: Best-fitting pre-melting functions (solid line=MAP; pale shaded region=99% cred-
ible interval; dark shaded region=1σ (68%) credible interval) compared to original functional
forms from Yamauchi and Takei (2016, dashed line).
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Figure 6.21: Mean potential temperature difference between original and co-inverted pre-
melting parameterisation. Format follows Figure 6.15.
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Figure 6.22: Mean viscosity difference between original and co-inverted pre-melting parameter-
isation. Format follows Figure 6.16
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and viscosity data, the following values are obtained: E
(︁
|M ′|

)︁
= 0.0140, E

(︁
Q−1

)︁
= 0.0520

and E(η) = 0.0567. Therefore, the fit to the normalised modulus data is almost identical

between the original and adapted parameterisations, whereas E
(︁
Q−1

)︁
and E(η) are improved

by 35% and 16%, respectively, for the adapted parameterisation relative to that of Yamauchi

and Takei (2016). Compared to the previous section in which the pre-melting parameters

were inverted separately to the viscoelasticity parameters, a much narrower range of predicted

pre-melting functions is predicted (Figure 6.20). This may suggest that the geophysical data

provide helpful information regarding the structure of the pre-melting relationship, which can

be harnessed to tighten the range of plausible pre-melting functions. Regarding predictions of

mantle thermomechanical structure made using the co-inverted viscoelasticity parameterisation,

temperature and viscosity results are shown in Figure 6.21 and 6.22, respectively. As for the

previous section, temperature and viscosity predictions are shown compared to the original pre-

melting parameterisation of Yamauchi and Takei (2016), which was calibrated in Chapter 2.

For the co-inverted parameterisation, temperatures are on average hotter than the original

parameterisation of Yamauchi and Takei (2016), with the discrepancy increasing with depth:

20 ◦C at 75 km, 70 ◦C at 150 km, 130 ◦C at 250 km, and 160 ◦C at 350 km. The net effect of the

co-inverted parameterisation is to reduce predictions of average mantle viscosity by ∼ 0.5 orders

of magnitude. The effect on viscosity is relatively uniform with depth, although more muted

at 350 km depth (∼ 0.3 orders of magnitude). Importantly, the effect on mantle viscosity;

the parameter of most interest for simulating GIA, is smaller (in relative terms) than that on

predicted temperatures.

Having verified that the optimised viscoelasticity parameterisation provides a high quality

fit to the inversion data sets, it is instructive to look at its performance compared to experimen-

tal data not used within the inversion framework. In particular, anelasticity data obtained from

experiments on polycrystalline olivine (Jackson, 2019; Jackson et al., 2014; Qu et al., 2021).
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Figure 6.23: Fit of inverted viscoelasticity parameterisation to anelasticity data obtained from
experiments on olivine (Jackson, 2019; Jackson et al., 2014; Qu et al., 2021, solid line=MAP,
shaded region=1σ (68%) credible interval). Data retrieved from Priestley et al. (2024), who per-
formed Maxwell frequency normalisation based on best-fitting parameters obtained for Ol95Px5
in Qu et al. (2021). Due to low homologous temperature of experimental data, pre-melting
relationships overlap, meaning only Θ = 0.86 line (pink) can be seen. Extended Burgers model
fits (dashed lines) are based on parameters reported for their Ol95Px5 sample in Table 2 of Qu
et al. (2021).
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These data have previously been parameterised using an Extended Burgers model (e.g., Jack-

son, 2019). Analogously to the pre-melting parameterisation of Yamauchi and Takei (2016),

the Extended Burgers relaxation function consists of a monotonic background, and a super-

imposed dissipation peak (Equation 5 of Jackson, 2019). However, while the magnitude and

width of the dissipation peak in the pre-melting model is homologous-temperature-dependent,

these characteristics are assumed to be invariant with temperature in the Extended Burg-

ers model. This assumption is consistent with the interpretation that, at the microphysical

scale, the observed dissipation peak is caused by elastically accommodated grain boundary

sliding (EAGBS, Jackson and Faul, 2010). The magnitude of the dissipation peak attributed

to EAGBS was originally thought to be large, with a value of ∆P = 0.057 ± 0.002 quoted in

Jackson and Faul (2010). However, more recent data, collected after improvements to experi-

mental apparatus were made, reduced this amplitude by a factor of over 5; in Qu et al. (2021),

∆P = 0.011. In the recent study of Qu et al. (2024), the authors concluded that, contrary

to their previous conclusions (e.g., Jackson and Faul, 2010), EAGBS cannot account for the

sharp drop in VS across the oceanic LAB observed in several seismological datasets. The lack of

temperature dependence in the dissipation peak characteristics of the Extended Burgers model

leads to a fundamentally discrepant complex compliance parameterisation, as compared to the

pre-melting model. However, the olivine anelasticity data underpinning the Extended Burgers

model generally agree well with the co-inverted viscoelasticity parameterisation derived in this

section, with the exception of attenuation when Θ ≤ 0.72 (Figure 6.23). Calculating the RMS

misfit between the olivine data and the MAP co-inverted pre-melting model, it is found that

E
(︁
|M ′|

)︁
= 0.026, and E

(︁
Q−1

)︁
= 0.156. Since their parameterisation was optimised using

this olivine anelasticity data, Qu et al. (2021)’s expressions (see Ol95Px5 specimen in their

Table 2) provide comparably better fit (E
(︁
|M ′|

)︁
= 0.017, and E

(︁
Q−1

)︁
= 0.051). However,

the olivine data do not cover homologous temperatures high enough to assess the potential im-
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pact of pre-melting on these samples. Therefore, while different studies and laboratories may

offer discrepant parameterisations of anelasticity, based on different interpretations of micro-

physical behaviour, it now appears that all experimental data are reasonably consistent with

a pre-melting model. On the other hand, the borneol data of Yamauchi and Takei (2016) is

not consistent with an Extended Burgers model, since the latter does not incorporate homol-

ogous temperature-dependent anelastic behaviour. These observations are a positive sign for

the geophysics community, because they imply that phenomenological uncertainty regarding

how to describe anelasticity is now much smaller than previously thought. The impact of tran-

sient rheology on important geodynamic phenomena like GIA can therefore be more confidently

quantified using the approach outlined here.

6.4 Implementing Adapted Pre-Melting Parameterisa-

tion in a Numerical Simulation of Glacial Isostatic

Adjustment

In Section 6.2, the theoretical groundwork was laid for translating arbitrarily complex pa-

rameterisations of viscoelasticity into a form applicable to finite element models of continuum

mechanics. It was shown that an experimentally constrained model such as Yamauchi and

Takei (2016) can be implemented, combining Prony series with a recursive scaling method to

express M(t) as a function of state variables including temperature. Since the recursive scaling

method requires computationally efficient access to the complex compliance, an optimised form

of Yamauchi and Takei (2016) was developed in Section 6.3, using experimental and geophysi-

cal constraints within a joint inversion framework. Ultimately, these steps will enable the use

of realistic descriptions of Earth’s mechanical behaviour, grounded in laboratory observations,

within finite element GIA models incorporating three-dimensional variations in mantle struc-
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ture. To this end, I am one of several collaborators (alongside Bob Myhill, Fred Richards, John

Naliboff, Cedric Thieulot and Harriet Lau) working on such an implementation in ASPECT,

an open-source code used to simulate geodynamic processes. This project is in an early phase

of its development, and therefore a finite element implementation of transient rheology is not

presented here. Instead, the well-established Love number approach is applied, which uses

Green’s functions describing the response of Earth’s surface and gravity field to an impulse

load change. Utilising the adapted form of Yamauchi and Takei (2016) developed earlier in

this chapter, combined with the techniques developed to approximate this form with Prony

series, transient rheology is incorporated into the Love number theory. The resulting Green’s

functions are combined with a pseudo-spectral procedure for solving the generalised sea level

equation, enabling RSL changes in response to a synthetic deglaciation history to be computed,

and compared between Maxwell and transient rheological models. These outputs bring to light

how strongly sea level and ice sheet stability are affected by transient rheology.

6.4.1 Love Number Formulation of the GIA Problem

The Love number formulation is a powerful method for computing spatiotemporal patterns

of deformation in response to surface loading (Farrell, 1972; Love, 1909; Peltier, 1974; Shida,

1912). In a spherically symmetric domain, the surface displacement response to an impulse

load applied as a point-source is given by

u(ψ, t) =
rE
mE

∞∑︂

ℓ=0

[︃
hℓ(t)Pℓ(cosψ)r̂ + lℓ(t)

∂

∂ψ
Pℓ(cosψ)ψ̂

]︃
, (6.95)

where r̂ is the unit radial displacement vector, and ψ̂ the unit angular displacement vector,

which points from the loading source at (θL, φL) to the point of interest (θ, φ) along the great
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circle intercepting both locations, such that (Mitrovica et al., 1994)

cosψ = cos θ cos θL + sin θ sin θL cos(φ− φL). (6.96)

The constants rE and mE represent Earth’s radius and mass, respectively. The function Pℓ

represents the Legendre polynomial of degree ℓ, which can be expressed as

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ
(︁
x2 − 1

)︁ℓ
. (6.97)

The radial and angular displacement coefficients at each degree are the time-dependent Love

and Shida numbers, hℓ(t) and lℓ(t), respectively. An analogous set of Love numbers, kℓ(t)

determine how Earth’s gravitational field, g, is perturbed by impulse surface load changes

according to the expression

g(ψ, t) =
g

mE

∞∑︂

ℓ=0

[︁
ℓδ(t) + 2hℓ(t)− (ℓ+ 1)kℓ(t)Pℓ(cosψ)

]︁
. (6.98)

Note that a further expression, involving both hℓ(t) and kℓ(t), must be used to calculate the

perturbation to Earth’s axial tilt introduced by GIA (Peltier, 1974). Taken together, the Love

and Shida numbers encode Earth’s rheology and determine a set of Green’s functions which,

when combined with a surface loading history σL(r, t), can be used to predict how Earth’s

surface and external gravity field change shape over time.

Each of hℓ(t), lℓ(t) and kℓ(t) can be split into instantaneous and time-dependent components,

e.g. in the case of hℓ this looks like

hℓ(t) = hEℓ δ(t) + hVℓ (t), (6.99)

where hEℓ derives from the elastic component of the response, and hVℓ (t) derives from the non-
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elastic component of the response (Peltier, 1974). The instantaneous components hEℓ , l
E
ℓ and

kEℓ are the solutions on a purely elastic Earth, for which analytical solutions are available.

If Maxwell viscoelasticity is assumed, and Earth’s density and viscosity structure is totally

uniform, the time-dependent components hVℓ (t), l
V
ℓ (t) and k

V
ℓ (t) would exhibit the general form

p(t) = p exp (−st) , (6.100)

i.e. pure exponential decay, where s = 2π
τM

(Peltier, 1974). The Love and Shida numbers decay

asymptotically to zero as t→ ∞, due to the establishment of isostatic equilibrium. The presence

of only a single relaxation frequency s is consistent with the lack of radial stratification, which

would introduce additional relaxation modes and corresponding harmonic overtones (Peltier,

1976). If the assumption of radial uniformity is now relaxed, as is necessary to find a realistic

solution to the GIA problem, the Love and Shida numbers can still be expressed exactly, using

a discrete series of exponential decay functions of general form

p(t) =
∑︂

i

pi exp(−sit). (6.101)

The characteristic relaxation frequencies si and their associated weights pi represent the set

of eigenvalue and eigenfunction solutions of the viscoelastic Earth model (Peltier, 1976). In

other words, si and pi represent a set of normal modes via which Earth accommodates de-

formation. The modes are found by solving the governing equations of the GIA system in

the Laplace transform domain (Peltier, 1974). The governing equations comprise Poisson’s

equation (Farrell, 1972)

∇2ϕ̃(s) = −4πG∇ · ρũ(s) (6.102)
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incorporating gravity, and a set of linearised Stokes equations

∇ · σ̃(s)−∇ρgũ(s) · r̂ − ρ∇ϕ̃(s) + g∇
(︁
ρũ(s)

)︁
r̂ = 0, (6.103)

incorporating conservation of momentum. In these equations, ϕ̃ and ũ are perturbations to

Earth’s gravitational potential and outer surface, respectively. The Laplace transform variable

s represents a complex frequency, s = γ + iω. The symbol G = 6.674× 10−11Nm2 kg−2 is the

gravitational constant, meanwhile g = 9.81 m s−2 is the acceleration due to gravity on Earth.

Mechanical behaviour is specified using the following relationship between stress and strain:

σ(s) = Λ(s)Tr(ε)1+ 2M(s)ε, (6.104)

where Tr(ε) ≡ εii is the trace of the strain tensor. The s-dependent Lamé moduli, Λ(s) and

M(s) are expressed for a Maxwell solid as

Λ(s) =
λs+Kτ−1

M

s+ τ−1
M

, (6.105)

and

M(s) =
MUs

s+ τ−1
M

(6.106)

where λ is a constant related to the bulk modulus, K, and the unrelaxed shear modulus,MU , via

λ = K − 2
3
MU , and τM = η

MU
as previously. In the Laplace transform domain, the exponential

decay series of Equation 6.101 becomes

p̃(s) =
∑︂

i

pi
s+ si

. (6.107)

The normal mode eigenvalues si are located at the poles of p̃(s) on the negative-real s-axis,
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since

lim
s+si→0

p̃(s) → ∞. (6.108)

The corresponding pi are the residues of p̃(s) at each pole si. For a Maxwell solid, si and pi can

be found by normal mode analysis, which can be applied numerically using matrix methods

(Peltier, 1985). Therefore, the time-dependent component of the Love and Shida numbers can

be constructed by combining the exponential decay series presented in Equation 6.101 with the

solved residues and poles.

In the context of transient rheological models such as Yamauchi and Takei (2016), the struc-

ture ofM(s), h̃
V

ℓ (s), l̃
V

ℓ (s) and k̃
V

ℓ (s) becomes more complicated, inhibiting the ability to locate

the poles and residues relevant to each Love or Shida number via normal mode analysis (Lau,

2024). This is caused by difficulties in implementing a numerical algorithm which can locate

all simple poles, particularly when p̃(s) may be affected by other types of singularity such as

branch cuts (Mitrovica and Peltier, 1992). Despite this difficulty, the original exponential decay

series shown in Equation 6.101 remains applicable, but now as an approximation of the time-

dependent structure (rather than an analytical solution, as is the case for Maxwell rheology).

In this case, the estimated si and pi no longer represent the eigenvalues and eigenfunctions

of the underlying problem, but are instead used to empirically fit the frequency-dependent

behaviour. This is in many ways analogous to the use of a Prony series to approximate the

deformation behaviour of a given transient model of viscoelasticity (Lau, 2024). In order to

determine sensible values of si and pi, the collocation method is applied (Mitrovica and Peltier,

1992; Peltier, 1974). This involves evaluating p̃(s) at a pre-determined selection of real points

in s-space, represented as sj, and optimising si and pi by minimising the vector

f(sj) = p̃(sj)−
∑︂

i

pi
sj + si

. (6.109)
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Lau (2024) find that a suitable specification of sj spans real frequencies from 1 × 10−19 s−1 to

1×10−7 s−1, using four samples per decade, equidistant in logarithmic space. Therefore, the full

procedure for establishing a set of Love and Shida numbers relevant to a general description of

mechanical behaviour, parameterised in terms of the complex compliance, is as follows. Firstly,

the Fourier transform domain J(ω) spectrum must be converted into its complex reciprocal

M(ω). Secondly, the resultant modulus spectrum must be fitted using a Prony series. In this

case, the relaxed modulus M̃∞ will be ignored for mathematical simplicity, i.e.

M̃1(ω) =

i=NM∑︂

i=1

αi
(ωτi)

2

1 + (ωτi)2
, (6.110)

and

M̃2(ω) =

i=NM∑︂

i=1

αi
ωτi

1 + (ωτi)2
. (6.111)

Third, the coefficients αi and τi of the fitted Prony series can be used to express the modulus

spectrum in the Laplace transform domain, by making the substitution s → iω, resulting in

the form

M̃(s) =

i=NM∑︂

i=1

αi
sτi

1 + sτi
, (6.112)

which replaces the analogous Maxwellian expression (Equation 6.106) in the stress-strain re-

lationship used to solve the governing equations of the GIA problem. Fourth, the governing

equations must be solved to find the Laplace transform domain Love and Shida numbers, h̃
V

ℓ (s),

l̃
V

ℓ (s) and k̃
V

ℓ (s), which can then be transferred into the time domain using the collocation

method described earlier (Equation 6.109). In order that the Love and Shida numbers de-

rived for an arbitrary rheology (using the approximate collocation method) agree with Maxwell

rheology in the fluid limit, the collocation Love and Shida numbers are normalised using a

multiplicative factor K. For example, the radial displacement Love numbers for an arbitrary
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rheology are given by

h̃ℓ(s) = hEℓ +K
∑︂

i

pi
s+ si

, (6.113)

and their Maxwell counterparts are given by

h̃
MX

ℓ (s) = hEℓ +
∑︂

i

pMX
i

s+ sMX
i

. (6.114)

In the fluid limit s → 0, h̃ℓ(s) and h̃
MX

ℓ (s) should be consistent with one another. Thus, the

normalisation factor is constrained to be

K =

∑︁
i
pi
si∑︁

i
pMX
i

sMX
i

. (6.115)

The Love and Shida numbers derived for the arbitrary rheology via collocation are then ad-

justed by making the substitution pi → Kpi. The resulting pi and si allow the time-dependent

Love and Shida numbers hVℓ (t), l
V
ℓ (t) and k

V
ℓ (t) to be expressed for the chosen rheology (Equa-

tion 6.101).

Once the time-dependent Love numbers have been solved for (whether for the Maxwell model

using normal mode analysis, or for the transient model using the collocation method), they can

be combined with their elastic counterparts (which are agnostic to the choice of viscoelastic

parameterisation), providing the complete forms hℓ(t), lℓ(t) and kℓ(t). These functions can then

be convolved in space and time with a loading function σL to calculate perturbations to Earth’s

scalar surface topography and gravity fields. The Love number approach can be combined with

a sea level equation, to calculate how meltwater contributions are redistributed over Earth’s

surface through time. Such spatiotemporal patterns of sea level depend principally on Earth’s

gravity field and the shape of the oceans, but are also affected by ice-ocean self-gravitation,

shoreline migration, and adjustments to Earth’s rotational state. Since sea level redistribution

itself induces a load change, the solid Earth continuously evolves in response to this forcing.
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Therefore, the sea level and solid Earth systems are inherently coupled, and must be treated as

part of a system incorporating this coupling, to derive gravitationally self-consistent patterns

of sea level change.

6.4.2 Sea Level Equation

Sea level, S(r, t), is a scalar field defined over all of Earth’s surface as the distance between the

geoid and the solid surface, i.e. (Farrell and Clark, 1976; Kendall et al., 2005)

S(r, t) = G(r, t)−R(r, t). (6.116)

Topography can also be defined with respect to the geoid, such that (Kendall et al., 2005)

L(r, t) = −S(r, t), (6.117)

where L is the topography field. Ocean depth is defined as zero on the continents, and over

the portions of ocean covered by grounded ice, but is otherwise equal to the sea level (Kendall

et al., 2005). Mathematically, this is expressed as

H(r, t) = O(r, t)β(r, t)S(r, t), (6.118)

where the ocean function is

O(r, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if S(r, t) > 0

0 otherwise,

(6.119)

and the ice function is

β(r, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if I(r, t) > 0

0 otherwise,

(6.120)
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where I(r, t) is the spatial field representing ice thickness, provided by the input ice model. It

will be convenient to combine the ocean and ice functions to find the ice-free ocean area, given

by O′(r, t) = O(r, t)β(r, t). Changes in the ocean depth field, ∆H(r, t, t0) = H(r, t)−H(r, t0),

since the initiation of loading at t0 are connected to changes in sea level, topography, and the

time-dependent ice-free ocean function by the generalised sea level equation, given by (Kendall

et al., 2005)

∆H(r, t) = ∆S(r, t, t0)O
′(r, t)− L(r, t0)∆O

′(r, t, t0). (6.121)

The generalised sea level equation captures the coupling between sea level and solid Earth

mentioned earlier, since the ocean depth changes expressed on the left hand side of the equation

are required to calculate the sea level and oceanic domain changes expressed on the right hand

side. Therefore, it must be solved iteratively to achieve convergence (Kendall et al., 2005). Note

also that in modelling GIA and sea level in response to past glaciation-deglaciation histories, one

of the boundary conditions is the present-day topography Lf , which should be arrived at by the

end of the simulation. This means a further iterative process is required, which involves selecting

an initial topography field L(r, t0), and running the whole simulation. The final topography

at time tf , given by L(r, tf ) must then be compared to the boundary condition Lf , and the

misfit used to inform an appropriate perturbation to L(r, t0) run in a successive simulation.

This process must be repeated until a suitable L(r, t0) is found, such that
⃓⃓
L(r, tf )− Lf

⃓⃓2
< ϵ,

where ϵ is a prescribed misfit tolerance. In this work, such an iterative process will not be

needed, since the initial topography field will be set to present-day, according to ETOPO2

(NOAA National Geophysical Data Center, 2006).

To solve the generalised sea level equation, the procedure laid out fully in Kendall et al.

(2005) is employed, known as the pseudo-spectral approach. This approach employs spherical

harmonic basis functions of degree ℓ (where theoretically ℓ = 0, 1, . . . ,∞; in computational

applications ℓ is truncated at some resolution-dependent ℓmax) and order mℓ (where mℓ =
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−l,−l + 1, . . . , 0, . . . , l − 1, l), referred to as Y ℓ
mℓ
. Globally defined fields (such as sea level),

referred to generally as X(r, t) can be expressed in this basis using the form

χ(r, t) =
∞∑︂

l=0

l∑︂

mℓ=−l

χℓ
mℓ
(t)Y ℓ

mℓ
, (6.122)

where χℓ
mℓ

are the time-dependent coefficients of each basis function. The basis functions Y ℓ
mℓ

are orthogonal, such that
∫︂

∂V

Y ℓ
mℓ
Y † ℓ′

m′
ℓ
dΩ = 4πδℓℓ′δmℓm

′
ℓ
, (6.123)

where dΩ = sin θ dθ dφ (latitude, θ, and longitude, φ), Y † ℓ
mℓ

is the complex conjugate of Y ℓ
mℓ
,

and δij is the Kronecker delta. Orthogonality ensures that in the limit l → ∞, χ is a complete

representation of X, i.e.

lim
l→∞

χ(r, t) → X(r, t). (6.124)

The spherical harmonic basis functions Y ℓ
mℓ

are related to the Legendre polynomials used to

generate viscoelastic deformation Love numbers by the following relationship

Y ℓ
mℓ
(θ, φ) = N(−1)mℓ sinmℓ θ exp(imℓφ)

dmℓ

d cosmℓ θ
Pl(cos θ), (6.125)

where N is a degree- and order-dependent normalisation, given by

N ≡
√︄

(2ℓ+ 1)
(ℓ−mℓ)!

(l +mℓ)!
. (6.126)

These fundamental mathematical relationships make incorporating the Green’s functions asso-

ciated with deformation to Earth’s surface and gravity field (expressed as a function of Love

numbers and Legendre polynomials, e.g. Equation 6.95), compatible with the spectral (spher-

ical harmonic) domain fields harnessed in the sea level equation. Furthermore, solving the
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generalised sea level equation involves a number of integrals which are rapid to calculate in the

spectral domain, due to the orthogonality of the spherical harmonic basis functions. However,

fields projected onto the ice-free oceanic domain cannot be represented using the spherical

harmonic decomposition, and thus calculations involving such fields must be made in the spa-

tial domain. Therefore, the procedure used to solve for gravitationally self-consistent sea level

changes on a spherically symmetric Earth is termed pseudo-spectral. A flowchart describing

the algorithmic process by which the generalised sea level equation is solved, using the pseudo-

spectral approach, is provided in Figure 4 of Kendall et al. (2005).

6.4.3 Ice Loading and Earth Structure

Having established a procedure for calculating time-dependent Love numbers for both a Maxwell

and transient Earth (using normal mode analysis, and the collocation method, respectively),

as well as an iterative method for solving the sea level equation, there are two remaining

requirements. First, a suitable ice loading history is needed. For this, a uniform ice sheet of

thickness 1 km was assumed to cover all of West Antarctica in a static state for a period 3× tm,

before decaying completely over a period tm, and then remaining fully deglaciated for a further

time period 6×tm, such that the total simulation time tf = 10×tm. A total of 99 equally spaced

time steps were used. The assumed loading history is not designed to be physically realistic,

but rather to allow direct and simple comparison between Maxwell and transient rheologies,

in the general context of glacial collapse and warming climatic conditions. In order to test

how the frequency content of a given ice loading history influences the modelled deformation

response, a range of melting periods were considered:

tm = [25, 50, 100, 250, 500, 1000] years. (6.127)
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The second requirement is a model of Earth’s internal steady-state viscosity and elastic shear

modulus structure. In the upper mantle (0 km to 400 km), tomographic velocities derived from

ANT-20 were converted into η and MU using the MAP set of parameters from the adapted

pre-melting parameterisation laid out at the end of Section 6.3. These thermomechanically self-

consistent values are applicable to both the Maxwell and transient rheological models. Since the

Love number formulation requires a spherically symmetric Earth model, it is necessary to select

a single η and MU at each depth node of the GIA model. In order to assess the influence of

transient rheology on the stability of the marine-grounded West Antarctic Ice Sheet, the radial

structure at a longitude of 292.0◦ and latitude −68.0◦ (Marguerite Bay, Antarctic Peninsula)

was selected. In this region, the lithosphere is approximately 50 km thick, as inferred using the

depth to the 1200 ◦C isotherm as a proxy for the LAB. Between the LAB and 400 km depth,

steady-state viscosity ranges between

log10 η(z = 175 km) = 19.1 (6.128)

and

log10 η(z = 50 km) = 22.5, (6.129)

and is on average log10 η = 20.0±0.9 (Figure 3.4). The low steady-state viscosity profile selected

from the Antarctic Peninsula is similar to that estimated around the rest of the margin of the

West Antarctic Ice Sheet. Therefore, the near-field topography and RSL changes produced by

the GIA model using this Earth model will be representative of West Antarctica in general. On

the other hand, the intermediate- and far-field topography and RSL changes will be ignored,

for two main reasons. Firstly, globally averaged values of Earth’s upper mantle viscosity (ap-

proximately log10 η = 21), and lithospheric thickness (approximately 100 km), are significantly

higher than that of the Antarctic Peninsula. Secondly, the Earth as a whole exhibits significant
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lateral variation in upper mantle viscosity (approximately 19 ≤ log10 η ≤ 23) and lithospheric

thickness (approximately 40 to 350 km), which affects patterns of solid Earth deformation in a

way that cannot be captured by spherically symmetric GIA models (Powell et al., 2022). Since

the focus of this study is the potential effect of transient rheology on near-field bedrock-ice-

ocean feedbacks which occur in the near-field, spherical symmetry is an acceptable assumption

in this region.

The estimated upper mantle structure was interpolated onto a set of depth slices between

0 km to 400 km for which corresponding density and bulk moduli values were available from

the Preliminary Reference Earth Model (PREM, Dziewonski and Anderson, 1981). In the case

of Maxwell rheology, the η and MU values themselves are all that are necessary to compute

the Laplace transform domain function M(s) (using Equation 6.106), and combined with the

assumed bulk modulus, they can be used to compute Λ(s) (using Equation 6.105). For transient

rheology, these values must be used to compute the relevant J(ω) spectrum at each depth

slice, which is then used in the construction of M(s) according to the method specified in

Section 6.4.1. The transient form for Λ(s) is computed using the relationship (Lau, 2023)

Λ(s) = K − 2

3
M(s), (6.130)

whereK is still assumed to be frequency-independent and taken from PREM, as for the Maxwell

model.

6.4.4 Results

The radial and lateral displacement Love numbers calculated for the assumed Maxwell and

transient rheologies are shown in Figure 6.24. Of principle interest are the radial displacement

Love numbers, hℓ(s). In the infinite frequency limit, s → ∞, the Maxwell and transient

hℓ spectra converge. This is consistent with the approach towards purely elastic behaviour,
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where viscous deformation is negligible. Convergence of hℓ between the two rheologies also

occurs in the zero frequency limit, s → 0, since in this regime only the steady-state viscosity

controls the amplitude of radial displacements. However, close convergence does not occur

until s ≤ 10−9 kyr−1, whereas in reality the Maxwell and transient spectra should converge

when τ >> τM , which corresponds roughly to s << 10−1 kyr−1. This result highlights one of

the drawbacks of the Love Number approach to solving the GIA problem. Namely, that when

implementing an upper mantle structure with fine-scale radial layering (i.e., sub-100 km-scale

variations in viscosity and shear modulus), the Laplace transform domain space for each Love

and Shida number becomes structurally complex. This makes locating all of the poles (and

their associated residues) challenging in the case of Maxwell rheology, and obtaining a suitable

approximation of hℓ (as well as kℓ and lℓ) via the collocation technique challenging in the case of

transient rheology. This issue is likely responsible for the lack of convergence at more realistic

frequencies. Within the intermediate range of frequencies relevant to GIA (in addition to the

viscous and elastic end-member limits), 10−1 kyr−1 < s < 102 kyr−1, the magnitude of hℓ(s)

is larger for the transient Earth as compared to the Maxwell Earth. The same pattern is seen

for the lateral displacement Shida numbers, lℓ(s). Physically, this means that for relaxation

processes triggered within this frequency band, the transient Earth will exhibit displacements

of greater amplitude than the Maxwell Earth. Indeed, the same behaviour would be observed

for geodynamic processes operating at different frequencies to GIA, since the transient values,

hℓ(s) and lℓ(s), are of equal or greater magnitude than their Maxwell counterparts across the

entire spectrum.

For each combination of rheology and ice loading history, the sea level equation was solved,

resulting in global surface deformation, topography and RSL fields at each of the 99 time steps

specified in the simulation, i.e. R(r, t), L(r, t) and S(r, t). Extracting the value of these fields
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Figure 6.24: Love and Shida numbers relevant to Earth surface displacement, as a function of
Laplace transform domain frequency s (for real s) on a transient viscoelastic Earth. The Love
numbers hℓ(s) control Legendre polynomial degree- and frequency-dependent radial displace-
ments to Earth’s surface (shown here for ℓ = 10, 16 and 25). The Shida numbers lℓ(s) are
analogous to hℓ(s), but instead control lateral displacements. Shida numbers only shown for
single degree (ℓ = 25), due to relative insensitivity of lℓ(s) to ℓ.
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Figure 6.25: GIA induced topography change at the Antarctic Peninsula on a transient Earth.
Note that topography is defined relative to the geoid (Equation 6.117). Initial topography set
according to present-day, using ETOPO2 (NOAA National Geophysical Data Center, 2006,
panel a). Melting timescale tm = 25 years. Topography evolution (panel b) at Marguerite Bay
(292.0◦E, −68.0◦S, yellow star on panel a) shown for Maxwell (orange dashed line) and transient
(blue solid line) viscoelastic models. Maps of topography change, ∆L = L(t) − L(t = 0), at
specific time intervals (t = [0.35, 0.40, 0.50, 1.00] tf , where tf = 10× tm = 250 years is the total
simulation time) for the Maxwell (panels c-f) and transient (panels g-j) models. Topography
change expressed as a percentage of the maximum Antarctic Peninsula ∆L value, which occurs
in the transient GIA simulation at t = tf .
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Figure 6.26: Earth surface displacement and RSL (R and S, respectively) evolution at Mar-
guerite Bay for each ice loading history, shown for Maxwell (orange dashed lines) and transient
(blue solid lines) viscoelastic models. For each ice loading history (melting time tm shown in
topography panel inset, total simulation time tf = 10× tm), radial displacement and RSL are
shown as percentages of the (absolute) value of the Maxwell model at the end of the simulation
(complete values reported in Table 6.3).
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Melting Timescale tm (years) Rheology ∆R (m) Ṙmax (myr−1) ∆S (m) Ṡmax (myr−1)

25
Maxwell 46 1.45 -58 -2.17
transient 69 (+52%) 2.17 (+50%) -82 (+41%) -2.84 (+31%)

50
Maxwell 60 0.75 -73 -1.1
transient 85 (+41%) 1.26 (+69%) -98 (+34%) -1.6 (+45%)

100
Maxwell 84 0.40 -97 -0.58
transient 106 (+26%) 0.69 (+72%) -119 (+23%) -0.87 (+50%)

250
Maxwell 129 0.20 -141 -0.27
transient 149 (+16%) 0.32 (+58%) -162 (+15%) -0.39 (+44%)

500
Maxwell 164 0.14 -177 -0.16
transient 183 (+11%) 0.20 (+44%) -196 (+11%) -0.23 (+44%)

1000
Maxwell 191 0.10 -203 -0.11
transient 208 (+9%) 0.12 (+25%) -220 (+8%) -0.14 (+27%)

Table 6.3: Earth surface displacement and RSL change measures. Radial displacement ampli-
tude change (∆R = R(t = tf ) − R(t = 0)), maximum rate of displacement (Ṙmax = Ṙ(R̈ =
0,

...
R < 0), where Ṙ ≡ dR

dR
), and the equivalent measures for RSL (∆S and Ṡmax) shown for each

choice of rheology (Maxwell or transient), and each melting timescale tm. Percentages reported
in parentheses in each of the transient entries represent a comparison to their corresponding
Maxwell value, analogously to Equation 6.135.

at a given near-field location, rNF, such that

RNF(t) = R(rNF, t), (6.131)

LNF(t) = L(rNF, t), (6.132)

and

SNF(t) = S(rNF, t), (6.133)

it is possible to compare the unique deformation behaviour predicted by each rheological model

in response to the experienced ice loading changes. Honing in on the bedrock topography field

computed over the Antarctic Peninsula, LNF(t), the results of the GIA simulation for which

tm = 25 years are shown in Figure 6.25. Bedrock in this region is situated either beneath

or within close proximity to the simulation’s melting ice load, leading to a general pattern of

topographic uplift for both rheologies. Roughly 80% of this increase in topography is caused
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by Earth’s radial displacement. The remainder is caused by a reduction in local gravitational

field strength, which occurs due to ice melting. However, the amplitude and rate of topography

change during and after melting is significantly higher for the transient model, as compared

to its Maxwell counterpart. This can be seen by looking at the total RSL change over the

simulation, defined as

∆S = S(t = tf )− S(t = 0), (6.134)

whose amplitude is equal to the amplitude of topography change (see Equation 6.117). At

Marguerite Bay (292.0◦E, −68.0◦S), ∆S is −82m in the transient model, which is 41% larger

than the Maxwell model (−58m). The peak rate of RSL change, referred to as Ṡmax, occurs

during melting and equates to −2.84 myr−1 in the transient model, which is 31% higher than

the Maxwell model (−2.17 myr−1). The Earth surface displacement and RSL (R and S,

respectively) evolution associated with each tm is shown in Figure 6.26, and the full set of

∆R, Ṙmax, ∆S, Ṡmax measures corresponding to each simulation is presented in Table 6.3.

When comparing the percentage difference between ∆R in the case of transient versus Maxwell

Earths, i.e.

∆Rtransient −∆RMaxwell

∆RMaxwell

(6.135)

as a function of the melting timescale tm, the following succession is observed: +52% (25 years),

+41% (50 years), +26% (100 years), +16% (250 years), +11% (500 years) and +9% (1000 years).

Therefore, the extent to which more deformation occurs in the transient model diminishes as

the melting timescale increases, due to the smaller contribution arising from the activation of

transient relaxation processes and the increasing dominance of end-member steady-state viscous

relaxation.
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6.4.5 Discussion

These results have significant implications for three main areas of research related to ice sheet

stability and sea level change. First, palaeo sea level and fingerprinting studies seek to under-

stand past patterns of deglaciation. The temporal patterns of near-field surface displacement

and RSL change presented in Figure 6.26 show that for rapid deglaciation events such as Melt-

water Pulse 1A (MWP-1A, 14,650 years ago, duration roughly 500 years), transient rheological

models cause the Earth to deform more, and more rapidly, than their reference Maxwell coun-

terparts. This behaviour will also be reflected in the intermediate- and far-field, where canonical

sea level marker locations such as Barbados and Tahiti are used to provide sensitivity to the

spatiotemporal deglaciation pattern of MWP-1A. The results corroborate the findings of Lau

(2023), that time-dependent variations in apparent viscosity may be critically important in de-

termining the RSL fingerprint of a particular ice melting configuration. However, the Love and

Shida numbers presented in Figure 6.24 differ significantly from those presented in Lau (2023),

in which an Extended Burgers model was used. The former Love and Shida number spectra

imply that the transient rheological model is more yielding than its Maxwell counterpart across

all frequencies. The latter (see also Lau, 2024, in which the master curve parameterisation

of McCarthy and Takei, 2011 is used) imply that there is a crossover point, sc, such that the

transient model is less yielding than its Maxwell counterpart for all s < sc. It appears as if

sc is dependent on the Legendre polynomial degree ℓ, but corresponds to timescales of order

1 kyr and longer. The cause of this discrepancy has not been confidently identified, however it

is possible to speculate that it could be due to the different choice of rheological model (which

must affect the shape of the hℓ(s) and lℓ(s) spectra, but would not necessarily introduce the

observed crossover frequency sc), or a less obvious change in modelling assumptions.

Secondly, inversions of upper mantle structure based on present-day observations of de-

formation will be heavily affected by the exhibition of transient deformation. Let us assume
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that an extreme event of glacial collapse occurs at Marguerite Bay, with a melting timescale

of tm = 25 years, and Earth deforms as a transient body. Therefore, the blue solid line in

panel a of Figure 6.26 will approximate the observed pattern of deformation in response to

such an event. Now, a research team take these observations, along with an accurate model

of the ice melting history, and invert them for a best-fitting rheological model. If a Maxwell

rheology is assumed (as is usual for studies of this sort, see e.g. Samrat et al., 2021), a much

lower best-fitting viscosity will be obtained than the true steady-state value, due to the effect

of transient relaxation on lowering the apparent viscosity (as shown in Section 3.3.3). Further-

more, since transient rheology not only alters the average observed strain rate, but also the

time-dependent pattern of deformation, it will not be possible to fully fit the observations using

a Maxwell model. This source of phenomenological error will therefore further bias the inverted

viscosity. Although, this effect is likely to be of second-order importance, since the difference

in deformation pattern appears to be relatively minor (compare shape of blue and orange lines,

panel b of Figure 6.25) and may be smaller in scale than typical data uncertainty. Returning to

the issue of inverted Maxwell viscosities, these values will only be useful in forward models of

GIA in the following situation: modelling deformation on a Maxwell Earth in response to the

precise ice melting history relevant to the viscosity inversion. Therefore, the results presented

in Figure 6.25 and 6.26 show that integrating estimates of mantle structure derived from local

studies into a larger-scale (e.g. global) model will not yield reliable results unless the local

studies themselves incorporate experimentally derived parameterisations of transient rheology.

This means that care is needed to avoid interpreting variations in viscosity arising due to time-

dependent mechanics as due to three-dimensional variations in steady-state viscosity structure,

which would ultimately lead to discrepant predictions of RSL when used in forward modelling

of the GIA problem.

Finally, on the issue of forward modelling, the radial displacement and RSL changes pre-
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sented herein highlight that for ice melting events operating on short timescales (i.e., 1, 000 years

and less, particularly 25 to 100 years), such as glacial collapse, the presence of transient be-

haviour significantly increases deformation rates as compared to a reference Maxwell viscoelastic

model. As a result, near-field RSL falls faster, and by a greater total amplitude, in response

to such an event (as shown in Figure 6.26). A correspondingly larger and more rapid rise in

far-field RSL will therefore counter this near-field behaviour in the transient case, preserving

the total meltwater content. More importantly, increased rebound rates at the grounding line

of the retreating ice may reduce the impact, or negate the onset, of the marine ice sheet in-

stability (MISI). MISI is a scenario which may occur when ice grounded below sea level, upon

bedrock which deepens towards the ice sheet interior, experiences runaway retreat. It is caused

by the thickening of the water column as the ice retreats backwards, which in-turn accelerates

melting rates, leading to a positive feedback cycle. If the bedrock rebounds rapidly enough in

response to ice mass loss, however, MISI may be less likely to occur in potentially vulnerable

areas such as the Antarctic Peninsula, and the Amundsen Sea Embayment, due to the reduction

in water column thickness caused by enhanced bedrock uplift (Gomez et al., 2010; Kingslake

et al., 2018). Since the development (or lack thereof) of MISI is a critical factor determining

the stability of the West Antarctic Ice Sheet, accurate modelling of these coupled interactions

between ice sheets, sea level and solid Earth is required to predict future sea level. The patterns

of RSL change shown in panels a-e of Figure 6.26 therefore show that incorporation of transient

rheology into forward models of GIA will be critical to improving predictions of future global

sea level change.

6.5 Conclusions

A theoretical basis for the application of arbitrarily complex parameterisations of viscoelastic-

ity to finite element models of continuum mechanics has been developed. This basis involves
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connecting experimentally constrained models of the complex compliance, J(ω), to Prony se-

ries representations of the relaxation modulus, M(t). It was shown that the master curve

parameterisation of McCarthy and Takei (2011), which obeys Maxwell timescale scaling, can

be incorporated by normalising the discrete set of timescales and amplitudes associated with

the Prony series expansion. This normalisation procedure allows element-to-element changes

in state variables (such as temperature T , pressure, P , and composition, X) to be accounted

for while using the same underlying Generalised Maxwell Model. The theoretical framework

was then further developed to enable the use of a general compliance parameterisation, such

as Yamauchi and Takei (2016), which does not obey Maxwell scaling. This development was

made by obtaining a recursive scaling relationship between Prony series at a prescribed refer-

ence homologous temperature, Θr, and an arbitrary homologous temperature, Θ. The error

introduced by using the approximate recursive scaling method was shown to be significantly

smaller than that caused by using a Prony series of NM = 15 Maxwell elements. Therefore, the

theoretical basis laid out in Section 6.2 represents a key development towards utilising the most

accurate parameterisations of Earth’s mechanical behaviour into geodynamic simulations.

In Section 6.3, an optimised form of Yamauchi and Takei (2016) was developed, which

was motivated by two main factors. First, computationally efficient access to the complex

compliance spectrum, J(ω), is required to use the recursive scaling method for calculation

of state-dependent relaxation moduli. In the original parameterisation, implementation of

the pre-melting functions AP (Θ), σP (Θ) and Aη(Θ) required computationally expensive if-else

statements. By substituting their piecewise definitions with scaled hyperbolic tangent func-

tions, such if-else statements could be replaced with efficient vectorised function calls. Second,

the original parameterisation was obtained subjectively, and therefore the reported pre-melting

parameters were not optimised against the experimental data. By performing a Bayesian in-

version, a set of best-fitting pre-melting parameters most faithful to the original experimental
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data could be obtained, as well as a set of corresponding uncertainties. Furthermore, by com-

bining the experimental and geophysical data constraints within a joint inversion framework,

the pre-melting and viscoelasticity parameter space could be simultaneously optimised. This

approach enables trade-off between all model parameters to be accounted for in the conversion

between VS and thermomechanical structure (including viscosity, η). The theoretical basis de-

veloped in Section 6.2, combined with the optimised form of Yamauchi and Takei (2016), lays

the groundwork for a thermomechanically self-consistent implementation of transient rheology

into geodynamic models (including three-dimensional variations in mantle structure).

To reveal the importance of transient rheology in GIA modelling, the optimised form of

Yamauchi and Takei (2016) was used to calculate Earth surface displacement and relative sea

level change in response to a melting West Antarctic Ice Sheet. The Prony series represen-

tation demonstrated in Section 6.2 was used to express the chosen rheology in the Laplace

transform domain, via M(s), which represents the s-domain relaxation modulus. M(s) could

be incorporated into the system of equations defining the GIA problem, and solved using Love

and Shida numbers. Combining the Love number approach with a pseudo-spectral method

for solving the sea level equation, this framework enables calculation of raidal displacement

and sea level changes on a transient viscoelastic Earth. To define Earth’s radial mantle struc-

ture, thermodynamically self-consistent inferences of steady-state viscosity and unrelaxed shear

modulus (calculated using the joint inversion procedure developed in Section 6.3) relevant to

Marguerite Bay (Antarctic Peninsula) were used. It was demonstrated that for short melt-

ing timescales, significantly more near-field deformation is induced by the transient rheological

model, as compared to a reference Maxwell model. For example, when tm = 25 years, a 52%

larger Earth surface displacement (between t = 0 and the final timestep of the simulation,

at t = 10 × tm = 250 years) at Marguerite Bay was observed for the transient model. The

presence of decadal- and centennial-timescale transient deformation is highly significant in the

255



context of palaeo sea level fingerprinting studies, which typically assume elasticity over such

timescales. The extent to which more deformation occurs in the transient model was shown to

diminish as the melting timescale increases. This result is consistent with the increasing dom-

inance of steady-state viscous behaviour at such timescales, and leads to timescale-dependent

apparent viscosity. Thus, assuming Earth is a transient body, inversions of mantle structure

based on geodetic observations will recover discrepant Maxwell viscosity values, depending on

the frequency content of the loading process causing the observed deformation. Furthermore,

the significant contribution of transient deformation towards grounding line rebound may con-

tribute positively towards ice sheet stability in modern melting scenarios (Gomez et al., 2010).
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Chapter 7

Conclusions

7.1 Summary

The solid Earth plays a fundamental role in governing sea level change through space and

time. In response to ice volume changes, perturbations to Earth’s surface, rotational state, and

gravitational field cause the hydrosphere to continuously redistribute water over evolving ocean

basins. Accurate GIA models are therefore required to predict near- and far-future patterns

of sea level change in a warming climate. Indeed, since the seminal work of Farrell (1972),

theoretical and computational advances have led to increasingly powerful numerical approaches

to solving the GIA problem. Sufficient progress has been made that it is now possible to

calculate sea level changes on a solid Earth exhibiting lateral variations in mantle viscosity and

lithospheric thickness (Whitehouse, 2018). However, difficulties constraining Earth’s interior

structure have led to poor inter-model agreement, and large uncertainty in resulting estimates

of solid Earth deformation and sea level change (Caron et al., 2018).

In Chapter 2, this issue is addressed, using seismic wave speed as a geophysical proxy

for mantle thermal structure. By utilising an experimental parameterisation of mantle rock

viscoelasticity, VS can be converted into estimates of temperature, and temperature-dependent
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variables such as viscosity. This approach circumvents a number of limitations associated with

empirical VS–T conversions. In order to calibrate the free parameters contained within the

viscoelasticity parameterisation, a Bayesian inversion approach incorporating geophysical data

constraints is adopted. The main constraint used is based on the thermal structure of oceanic

lithosphere. The statistical framework developed in Chapter 2 entails treating viscoelasticity

parameters as random variables, and enables robust characterisation of their covariance. This

covariance structure can be harnessed to assess uncertainty in estimated mantle structure.

A probabilistic assessment of Antarctic mantle structure is conducted in Chapter 3, by

applying the inversion framework developed in the previous chapter, in order to calculate

temperature-dependent variables such as viscosity, LAB depth and GHF. Uncertainty in es-

timates of mantle viscosity were found to be reduced by 4 to 5 orders of magnitude at 150 km

depth, as compared to an approach insensitive to viscoelasticity parameter covariance. A clear

dichotomy between mantle structure in East and West Antarctica is observed, in accordance

with other studies. Evidence is found for mostly thick lithosphere (> 150 km), high mantle

viscosity (> 1023 Pa s at 150 km depth), and low GHF (∼ 40 to 50 mWm−2) beneath East

Antarctica. In West Antarctica, the opposite is seen, with average LAB depth 63±13 km, pres-

ence of multiple low viscosity anomalies (e.g., < 1019.5 Pa s beneath Marie Byrd Land at 150 km

depth), and GHF between 50 and 100 mWm−2. These outputs have important implications

for GIA studies, in which lateral viscosity and LAB depth variations affect the timing and char-

acter of viscoelastic deformation. Having obtained high-resolution images of Antarctic mantle

viscosity structure, the issue of transient rheology is explored. Inherent within experimental

parameterisations of mantle rock viscoelasticity (e.g., the pre-melting model of Yamauchi and

Takei, 2016) are time-dependent apparent viscosity variations. The effect of such variations on

inversions for mantle structure based on GPS deformation data was explored. It was shown

that by accounting for time-dependent apparent viscosity, seemingly disparate (by ∼ 1 order
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of magnitude) estimates of Antarctic mantle viscosity derived from GPS observations from the

same region can be reconciled.

In Chapter 4, Antarctic GHF is revisited in order to quantify the impact of laterally vari-

able crustal conductivity and radiogenic heat production. The supply of thermal energy to

the ice sheet-solid Earth interface, as quantified by GHF, can influence basal melt and slid-

ing, englacial rheology, and erosion. As a result, ice sheet models require reliable estimates of

GHF in order to accurately capture ice dynamics (Burton-Johnson et al., 2020). This prob-

lem is of particular importance in Antarctica, where significant lateral variations in GHF are

estimated, based not only on geophysical inference, but also local borehole data. Building on

the VS-derived Antarctic GHF model in Chapter 3, based on reliable inferences of upper man-

tle structure between 50 km to 400 km, crustal VP data is integrated to provide constraint

on crustal conductivity (2.3Wm−1 K−1 to 2.9Wm−1 K−1) and radiogenic heat production

(0 µWm−3 to 6 µWm−3), which vary as a function of crustal composition. Since conduc-

tivity and heat production are dominant controls on the shallow geothermal gradient, their

constraint allows robust estimation of Antarctic GHF (20mWm−2 to 130mWm−2). Com-

pared with previous studies (including that presented in Chapter 3), which do not account for

variations in crustal composition, stronger lateral variations in Antarctic GHF are estimated.

Such GHF estimates agree more closely with borehole-derived GHF inferences than previous

models (RMS = 29.2 ± 2.6 mWm−2). Therefore, it is important to assess the implications of

such a GHF model on Antarctic sub-glacial thermal conditions, and the subsequent effect on

ice sheet dynamics.

Although the main focus of this thesis is on relationships between the solid Earth and

cryosphere, the methods developed to estimate mantle thermomechanical structure can be

used to make advances in a wide range of contexts. In Chapter 5, the Bayesian inverse frame-

work developed in Chapter 2 is modified to allow the use of xenolith-derived palaegeotherms as
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geophysical data constraints. By using a compiled inventory of such palaeogeotherms, maps of

Australian lithospheric structure are generated. A hyperparameter is applied to each locality

so that data constraints can be up- or down-weighted based on their individual reliability. This

feature is particularly important in the context of inverting xenolith data, since the lithosphere

may have been substantially modified since the time of emplacement in certain regions, leading

to discrepancies between palaeogeotherms and present-day geotherms. A total of 28 palaeo-

geotherms, combined with an adiabat pertaining to asthenospheric thermal structure, are used

to invert for best-fitting viscoelasticity parameters. Australian LAB depth is estimated to vary

between 40 km and 270 km. A powerful relationship between the 195 km LAB depth contour

and the location of sediment-hosted base metal deposits is observed. 78% of metal mass asso-

ciated with such deposits is found to be located within 100 km of this LAB depth contour, and

97% within 200 km, which is roughly equivalent to the horizontal resolution of the underlying

tomographic inversion. As shown by comparison with a synthetic data set in which deposit

locations are generated randomly, the observed LAB depth contour-deposit location correlation

is found to be statistically significant. Based on a two-sample Kolmogorov-Smirnov test, the

likelihood of such a correlation occurring randomly is found to be 1 in 1018.

Relationships between transient rheology, ice sheet stability, and sea level are investigated in

Chapter 6. In this chapter, three main developments are made. First, a blueprint for the appli-

cation of experimental parameterisations of viscoelasticity to numerical continuum mechanics

models is established. This involves connecting the complex compliance, J(ω), with a finite

Prony series approximation of the relaxation modulus, M(t). By normalising the timescales

and amplitudes associated with the Prony series, spatial variation in state variables (includ-

ing temperature, pressure and composition) can be accounted for within the same reference

model. These steps enable the use of cutting-edge parameterisations of mantle rheology within

geodynamic simulations, while self-consistently accounting for three-dimensional variations in
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mantle structure. Second, a modified form of the pre-melting model of Yamauchi and Takei

(2016) is constructed. This model replaces piecewise function definitions with a scaled hyper-

bolic tangent, which is defined by a single expression across its entire domain. This makes

implementation within computationally expensive continuum mechanics models feasible, by

enabling vectorised function calls instead of inefficient if-else statements. Using geophysical

and experimental data to simultaneously invert for best-fitting pre-melting function parame-

ters, and viscoelasticity parameters, an optimised pre-melting model is obtained. This model,

combined with the aforementioned Prony series approach, lays the groundwork for implemen-

tation of transient rheology into geodynamic models. Finally, the optimised pre-melting model

is applied to a simple simulation of Antarctic GIA in order to probe the effect of transient

deformation on near-field sea level. The Love number approach is combined with a pseudo-

spectral method for solving the sea level equation to calculate radial displacement and sea level

perturbations. To define Earth’s radial mantle structure, self-consistently inferred viscosity and

shear modulus values derived from Marguerite Bay in the Antarctic Peninsula are used. An

idealised West Antarctic Ice Sheet (uniform 1 km thickness) is assumed to deglaciate over a

finite melting timescale tm, where the following values for tm are applied: 25, 50, 100, 250,

500 and 1000 years. It is demonstrated that for short melting timescales, significantly more

near-field deformation is caused by the optimised pre-melting model (which exhibits transient

behaviour), as compared to a reference Maxwell model. When tm = 25 years, a 52% increase

in Earth surface displacement is observed for the transient model at Marguerite Bay. This

discrepancy reduces monotonically with tm, down to 8% at 1000 years, and the two models are

expected to perform identically as tm → ∞. Therefore, decadal- and centennial-timescale tran-

sient deformation is highly significant in the context of palaeo sea level fingerprinting studies,

which typically model the Earth as a purely elastic body. In the context of modern melt-

ing, these results imply that transient deformation promotes ice sheet stability, via accelerated
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grounding line rebound (Gomez et al., 2010).

7.2 Future Work

The work completed in this thesis opens an array of potential avenues for future work. First,

high-resolution maps of Antarctic mantle structure: temperature, viscosity, density and LAB

depth, can be applied to generate geodynamic models that faithfully represent the true physical

state and evolution of Earth’s interior. Viscosity and LAB depth structures can be used to

accurately model regional GIA, or integrated into global scale Earth models to calculate near-

and far-field patterns of sea level. At present, GIA uncertainty is typically investigated by

combining a range of possible Earth models with a range of possible ice loading histories,

without rigorous quantification of the likelihood of each model combination (e.g., van der Wal

et al., 2015). This type of analysis leads to a preferred GIA model (corresponding to a given

Earth structure and ice loading history), rather than a probabilistic assessment of the range

of possible models. By selecting Earth structures from the posterior ensemble corresponding

to certain probability percentiles, such an assessment becomes feasible. If combined with a

posterior ensemble of ice loading histories, GIA trends with formally quantified uncertainty

can be estimated. Rigorously calculated uncertainty is required for propagation into signals of

interest, including gravimetry-derived estimates of Antarctic ice mass balance, and future sea

level projections (Caron et al., 2018; Oppenheimer et al., 2019a).

Three-dimensional models of mantle temperature, density, and viscosity are also essential

for driving simulations of mantle convection over geological timescales. Patterns of convection

exert normal stresses on Earth’s surface, deforming it at rates of up to ∼ 100 m Myr−1; a

process known as dynamic topography (Richards et al., 2023). By building dynamic topography

models on the basis of high-resolution estimates of solid Earth structure, it will be possible to

assess the impact of mantle dynamics on palaeo ice sheet stability. For example, during the
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Mid-Pliocene Warm Period (3.3 Ma to 3.0 Ma), atmospheric CO2 levels were similar to present-

day at approximately 400 ppm, and global mean temperature was 1.9 ◦C to 3.6 ◦C above pre-

industrial levels (Richards et al., 2023). Therefore, this period is an important climate analogue,

the study of which may yield information about the sensitivity of Earth’s cryosphere to modern

and projected changes in climatic conditions. However, in assessing Mid-Pliocene ice volumes,

it is necessary to correct palaeo sea level markers for both GIA and dynamic topography

(Austermann et al., 2015; Rovere et al., 2014). Furthermore, inferences of Antarctic ice sheet

stability based on recovered ice volumes must take into account differences in bedrock elevation,

between the Pliocene and present-day. This is because changes in bedrock elevation impact

ice sheet vulnerability to rapid ice loss via perturbations to subglacial hydrology and drainage

networks, grounding line position and gradient, GHF, and ice surface elevation (Aitken et al.,

2023; Burton-Johnson et al., 2020; Gasson et al., 2015; Paxman et al., 2020).

In Chapter 4, the issue of Antarctic GHF model validation is discussed. Due to difficul-

ties in obtaining local inferences of Antarctic GHF from borehole data, data coverage over the

continent is extremely sparse. Although sophisticated geophysical methods (e.g., integrating

various forms of seismic data) have been developed to remotely infer GHF on continental scales,

such methods require robust validation to ensure their reliability. The framework developed

to estimate Antarctic GHF in Chapter 4 is theoretically applicable to any location of interest.

Therefore, a detailed validation of the combined VS and VP method for inferring GHF, with

consideration of crustal composition, could be completed by applying this method to a region

where abundant local inferences of GHF are available. In the United States, 17, 885 local infer-

ences of continental GHF are available; 35% of the entire global inventory of continental GHF

values, despite the USA covering only 6% of Earth’s continental surface area (Lucazeau, 2019).

Compared to data coverage in Antarctica, the density of local GHF inferences in the USA is

800 times larger, calculated on a data point per continental surface area basis. Furthermore,
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a densely spaced network of broadband seismometers (∼ 70 km between stations, USArray

Transportable Array) has enabled development of high resolution tomographic velocity models

(e.g., Shen and Ritzwoller, 2016). As a result, the United States is a suitable testing ground

for robust validation of the GHF estimation method presented in Chapter 4. Significant oppor-

tunity exists to identify potential discrepancies between geophysical and local GHF inferences,

and interpret whether they derive from geophysical modelling limitations. These insights can

ultimately be used to improve geophysical models of Antarctic GHF, and will thus feed into

improved models of ice sheet dynamics.

Finally, in Chapter 6, a blueprint for the application of experimental viscoelasticity param-

eterisations to numerical continuum mechanics simulations is established. Therefore, a clear

future objective is to develop a stable computational implementation of these transient vis-

coelastic models, e.g. using the geodynamic modelling code ASPECT. As a first step, a proof

of concept model could be developed, using simplified approximations of the geometry of the

Antarctic Ice Sheet and its melting history. By experimenting with different Prony series, the

impact of spatiotemporal changes in apparent viscosity on grounding line rebound rates and

sea level evolution could be explored. Such work would lay the groundwork for state-of-the-art

GIA simulations to be conducted. For example, fingerprinting studies could be revisited, im-

proving constraints on past ice volume changes. The elastically adjusted contemporary GIA

signal could be recalculated, and used to revise GRACE-derived constraints on present-day

ice melting rates. By pairing the geodynamic model with an array of possible future climate

scenarios, near- and long-term RSL projections could be generated. Incorporating physical

feedbacks between near-field RSL and ice dynamics, it may be possible to predict the fate of

the Antarctic Ice Sheet.
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Appendix A

BANCAL22: An Open-Source

Algorithm for Bayesian Anelasticity

Model Calibration

The Bayesian inverse modelling framework developed in Chapter 2, and extended to incorporate

xenolith-derived palaeogeotherm data in Chapter 5, enables self-consistent mapping of Earth’s

thermomechanical structure. Due to the flexibility of the modelling framework, it can be used

to generate images of lithospheric and asthenospheric structure anywhere where VS data of

sufficient resolution and quality is available, using any combination of five core geophysical data

constraints: palaeogeotherms, oceanic plate temperatures, adiabatic average asthenosphere

temperatures, shear-wave attenuation, and viscosity. It can also be adapted to use other data

types as needed. Furthermore, while applications of the Bayesian inverse model have been

restricted to the anelasticity parameterisation of Yamauchi and Takei (2016) in this thesis, any

such parameterisation can be included by simply adding a Python script. To encourage its use

by the wider geophysics community, I have made the modelling framework BANCAL22 available

via GitHub, using the following URL: https://github.com/JamesHazzard/BANCAL22. This
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section provides a brief overview of the software, and how it can be used.

A.1 Installation

To install BANCAL22, the simplest option is to clone the repository by running the following

line of code.

git clone https://github.com/JamesHazzard/BANCAL22

If you wish to contribute to the development of the code, it is best to fork the repository

following the instructions available at this link.

A.2 Performing Inversions Using BANCAL22

The modular structure of BANCAL22 makes it flexible and easily extensible. Several differ-

ent built-in options are already available when running inversions with the code, including the

ability to specify the combination of input data sets, Bayesian sampling algorithm, and vis-

coelasticity parameterisation that is implemented. These selections can be made by changing

the files in the options subdirectory of the root directory. Once the desired options have been

selected, running the inversion itself is straightforward.

A.3 Data, Algorithm and Anelastic Parameterisation Se-

lection

The data selection.txt file allows you to specify which independent observational con-

straints you want to fit in the inversion (i.e., xenolith VS and T data, age-dependent oceanic

VS and T , adiabatic VS and T , sublithospheric Q−1
S and VS and/or average sublithospheric

η and VS). Setting a 1 in a given column indicates that you wish to fit that data set; a
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0 will exclude it from the inversion. Note that data files need to be saved in the relevant

data/[xenolith|plate|adiabat|attenuation|viscosity] subdirectories of the root direc-

tory. These files must be formatted as follows:

data/xenolith/nodule obs all.zTVslln — xenolith-based geotherm data with the fol-

lowing column arrangement: depth (in km); temperature (in ◦C); VS (in km s−1); longitude of

xenolith eruption site (decimal degrees); latitude of site (decimal degrees); numerical index of

site (0–N).

data/plate/plate.VseTz — age-dependent oceanic VS and T data: VS (in km s−1); 1σ VS

uncertainty (in km s−1); depth (in km); temperature (in ◦C).

data/adiabat/adiabat.VseTz — adiabatic VS and T data: VS (in km s−1); 1σ VS uncer-

tainty (in km s−1); depth (in km); temperature (in ◦C).

data/attenuation/attenuation.QeVsz — sublithospheric attenuation (Q−1
S ) data: Q−1

S ,

1σ Q−1
S uncertainty, VS (in km s−1), depth (in km).

data/viscosity/viscosity.neVsz — sublithospheric viscosity (η) data: η (Pa s), 1σ η

uncertainty (Pa s), VS (in km s−1), depth (in km).

An additional subdirectory called data/potential temperature can be used to make note

of the potential temperature associated with the relevant observational constraints, and set the

preferred solidus temperature at 50 km depth, set as default to 1333◦C and 1326◦C, respectively.

The algorithm selection.txt file allows you to specify which Bayesian sampling algo-

rithm you would like to employ in the inversion. There are currently two options to select from:

GASWAM (Global Adaptive Scaling Within Adaptive Metropolis ; Andrieu and Thoms, 2008) or

ASASM (Accelerated Shaping Accelerated Scaling Metropolis ; Spencer, 2021). GASWAM is the

default option and described in detail in Chapter 2. ASASM adopts a similar approach and

also uses the history of samples to iteratively update the covariance matrix that is used to pro-

pose new samples (see Spencer, 2021). However, unlike GASWAM, it systematically ‘forgets’
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a certain number of previous samples as the inversion progresses. This strategy is based on

the observation that earlier samples are less likely to accurately characterise the true model

covariance and so should be preferentially ignored when generating new proposals. It should

be emphasised that neither GASWAM nor ASASM is necessarily ‘better’, indeed the algorithm

that performs best will likely depend on the nature of the input data and parameterisation

choices. I tested both algorithms using the data and parameterisation choices described in

Chapter 2, and found no notable differences in runtime or end result.

The parameterisation selection.txt file currently only has YT16 as an option, i.e., the

premelting model of Yamauchi and Takei (2016), and therefore cannot be adapted for now.

However, any other choice of parameterisation (e.g., the Extended Burgers model of Jackson

and Faul, 2010) can easily be implemented locally. Other users can also contribute their

implementation of a given model to the code repository via a pull request.

A.4 Running an Inversion

Once the various options have been set following the guidelines outlined in the previous section,

the inversion can be run by first entering

python3 setup.py

on the command line in the root directory. This command prepares the correct viscoelasticity

parameter and hyperparameter prior distributions based on the choice of parameterisation and

data, respectively. It also imports the relevant modules associated with the chosen inversion

algorithm and parameterisation. The inversion itself can then be run using

python3 main.py

whereupon “Beginning inversion at [YYYY-MM-DD HH-mm-ss]” should be the first output.

The inversion will continue, printing summary statistics every 100 samples, until it reaches the
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maximum number of samples set in main.py using the n trials variable (400,000 by default).

At the end of a successful inversion “Inversion completed in [runtime] seconds” will ap-

pear, while outputs are saved to a subdirectory with the path output/[YYYY-MM-DD HH-mm-ss].

The data and inversion options used are also stored in output/[YYYY-MM-DD HH-mm-ss], for

clarity.
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